Optimization Letters

, Volume 7, Issue 8, pp 1669–1679

# Scaling relationship between the copositive cone and Parrilo’s first level approximation

• Peter J. C. Dickinson
• Mirjam Dür
• Luuk Gijben
• Roland Hildebrand
Original Paper

## Abstract

We investigate the relation between the cone $${\mathcal{C}^{n}}$$ of n × n copositive matrices and the approximating cone $${\mathcal{K}_{n}^{1}}$$ introduced by Parrilo. While these cones are known to be equal for n ≤ 4, we show that for n ≥ 5 they are not equal. This result is based on the fact that $${\mathcal{K}_{n}^{1}}$$ is not invariant under diagonal scaling. We show that for any copositive matrix which is not the sum of a nonnegative and a positive semidefinite matrix we can find a scaling which is not in $${\mathcal{K}_{n}^{1}}$$. In fact, we show that if all scaled versions of a matrix are contained in $${\mathcal{K}_{n}^{r}}$$ for some fixed r, then the matrix must be in $${\mathcal{K}_{n}^{0}}$$. For the 5 × 5 case, we show the more surprising result that we can scale any copositive matrix X into $${\mathcal{K}_{5}^{1}}$$ and in fact that any scaling D such that $${(DXD)_{ii} \in \{0,1\}}$$ for all i yields $${DXD \in \mathcal{K}_{5}^{1}}$$. From this we are able to use the cone $${\mathcal{K}_{5}^{1}}$$ to check if any order 5 matrix is copositive. Another consequence of this is a complete characterisation of $${\mathcal{C}^{5}}$$ in terms of $${\mathcal{K}_{5}^{1}}$$. We end the paper by formulating several conjectures.

## Keywords

Copositive cone Parrilo’s approximations Sum-of-squares conditions 5 × 5 copositive matrices

## Mathematics Subject Classification (2000)

15A48 15A21 90C22

## References

1. 1.
Bomze I.M., de Klerk E.: Solving standard quadratic optimization problems via linear, semidefinite and copositive programming. J. Glob. Optim. 24(2), 163–185 (2002)
2. 2.
de Klerk E., Pasechnik D.V.: Approximation of the stability number of a graph via copositive programming. SIAM J. Optim. 12(4), 875–892 (2002)
3. 3.
Dickinson, P.J.C., Dür, M., Gijben, L., Hildebrand, R.: Irreducible elements of the copositive cone (preprint, 2012). http://www.optimization-online.org/DB_HTML/2012/03/3383.html.
4. 4.
Hall M. Jr., Newman M.: Copositive and completely positive quadratic forms. Proc. Camb. Phil. Soc 59, 329–339 (1963)
5. 5.
Haynsworth E., Hoffman A.J.: Two remarks on copositive matrices. Linear Algebra Appl. 2, 387–392 (1969)
6. 6.
Hildebrand, R.: The extreme rays of the 5 × 5 copositive cone. Linear Algebra Appl (in print). http://dx.doi.org/10.1016/j.laa.2012.04.017
7. 7.
Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. In: Emerging Applications of Algebraic Geometry. IMA Volumes in Mathematics and its Applications, vol. 149, pp. 157–270. Springer, New York (2009)Google Scholar
8. 8.
Maxfield, J.E., Minc, H.: On the matrix equation XX = A. Proc. Edinb. Math. Soc 13(2), 125–129 (1962/1963)Google Scholar
9. 9.
Murty K.G., Kabadi S.N.: Some NP-complete problems in quadratic and nonlinear programming. Math. Program. 39(2), 117–129 (1987)
10. 10.
Parrilo, PA.: Parrilo Structured semidefinite programs and semi-algebraic geometry methods in robustness and optimization. PhD thesis, California Institute of Technology (2000). http://thesis.library.caltech.edu/1647/.
11. 11.
Peña J., Vera J., Zuluaga L.F.: Computing the stability number of a graph via linear and semidefinite programming. SIAM J. Optim. 18(1), 87–105 (2007)
12. 12.
Robinson, R.M.: Some definite polynomials which are not sums of squares of real polynomials. In: Selected Questions of Algebra and Logic (collection dedicated to the memory of A. I. Mal’cev) (Russian), pp. 264–282 (1973) (Izdat. “Nauka” Sibirsk. Otdel., Novosibirsk)Google Scholar

## Authors and Affiliations

• Peter J. C. Dickinson
• 1
• Mirjam Dür
• 2
• Luuk Gijben
• 1
• Roland Hildebrand
• 3
1. 1.Johann Bernoulli Institute for Mathematics and Computer ScienceUniversity of GroningenGroningenThe Netherlands
2. 2.Department of MathematicsUniversity of TrierTrierGermany
3. 3.LJK, Université Grenoble 1/CNRS51 rue des MathématiquesGrenoble CedexFrance