Advertisement

Optimization Letters

, Volume 7, Issue 5, pp 991–1007 | Cite as

Variational iteration technique for solving a system of nonlinear equations

  • Muhammad Aslam Noor
  • Muhammad Waseem
  • Khalida Inayat Noor
  • Eisa Al-Said
Original Paper

Abstract

In this paper, we use the variational iteration technique to suggest and analyze some new iterative methods for solving a system of nonlinear equations. We prove that the new method has fourth-order convergence. Several numerical examples are given to illustrate the efficiency and performance of the new iterative methods. Our results can be viewed as a refinement and improvement of the previously known results.

Keywords

Nonlinear system Variational iteration technique Boundary value problem Convergence criteria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burden R.L., Faires J.D.: Numerical Analysis. PWS Publishing Company, Boston (2001)Google Scholar
  2. 2.
    Babajee D.K.R., Dauhoo M.Z., Darvishi M.T., Barati A.: A note on the local convergence of iterative methods based on Adomian decomposition method and 3-node quadrature rule. Appl. Math. Comput. 200, 452–458 (2008)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Babajee D.K.R., Dauhoo M.Z.: Convergence and spectral analysis of the Frontini–Sormani family of multipoint third order methods from quadrature rule. Numer. Algorithms 53, 467–484 (2010)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Babajee D.K.R., Dauhoo M.Z., Darvishi M.T., Karami A., Barati A.: Analysis of two Chebyshev-like third order methods free from second derivatives for solving systems of nonlinear equations. Appl. Math. Comput. 223, 2002–2012 (2010)MathSciNetGoogle Scholar
  5. 5.
    Darvishi M.T., Barati A.: A third-order Newton-type method to solve systems of nonlinear equations. Appl. Math. Comput. 187, 630–635 (2007)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Darvishi M.T., Barati A.: Super cubic iterative methods to solve systems of nonlinear equations. Appl. Math. Comput. 188, 1678–1685 (2007)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Decker D.W., Kelley C.T.: Newton’s method at singular points. II. SIAM J. Numer. Anal. 17, 465–471 (1980)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Frontini M., Sormani E.: Third-order methods from quadrature formulae for solving systems of nonlinear equations. Appl. Math. Comput. 149, 771–782 (2004)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Haijun W.: New third-order method for solving systems of nonlinear equations. Numer. Algorithms 50, 271–282 (2009)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    He J.H.: Variational iteration method-some recent results and new interpretations. J. Comput. Appl. Math. 207, 3–17 (2007)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Inokuti M., Sekine H., Mura T.: General use of the Lagrange multiplier in nonlinear mathematical physics. In: Nemat-Nasser, S. (ed) Variational Methods in the Mechanics of Solids, pp. 156–162. Pergamon Press, New York (1978)Google Scholar
  12. 12.
    Noor M.A., Noor K.I.: Three-step iterative methods for nonlinear equations. Appl. Math. Comput. 183, 322–327 (2006)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Noor M.A., Mohyud-Din S.T.: Variational iteration techniques for solving higher order boundary value problems. Appl. Math. Comput. 189, 1929–1942 (2007)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Noor M.A.: New classes of iterative methods for nonlinear equations. Appl. Math. Comput. 191, 128–131 (2007)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Noor M.A., Shah F.A.: Variational iteration technique for solving nonlinear equations. J. Appl. Math. Comput. 31, 247–254 (2009)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Noor M.A., Waseem M.: Some iterative methods for solving a system of nonlinear equations. Comput. Math. Appl. 57, 101–106 (2009)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Noor M.A., Waseem M.: Variants of Newton’s method using fifth-order quadrature formulas: revisited. J. Appl. Math. Inform. 27, 1195–1209 (2009)Google Scholar
  18. 18.
    Noor M.A.: Some iterative methods for solving nonlinear equations using homotopy perturbation method. Int. J. Comp. Math. 87, 141–149 (2010)MATHCrossRefGoogle Scholar
  19. 19.
    Noor M.A.: Iterative methods for nonlinear equations using homotopy perturbation technique. Appl. Math. Inf. Sci. 4, 227–235 (2010)MathSciNetMATHGoogle Scholar
  20. 20.
    Noor M.A., Noor K.I., Waseem M.: Fourth-order iterative methods for solving nonlinear equations. Int. J. Appl. Math. Eng. Sci. 4, 43–52 (2010)Google Scholar
  21. 21.
    Noor, M.A., Noor, K.I., Al-Said, E., Waseem, M.: Some new iterative methods for nonlinear equations. Math. Probl. Eng., 1–12 (2010). Article ID 198943Google Scholar
  22. 22.
    Noor M.A., Shah F.A., Noor K.I., Al-Said E.: Variational iteration technique for finding multiple roots of nonlinear equations. Sci. Res. Essays 6, 1344–1350 (2011)Google Scholar
  23. 23.
    Noor M.A., Al-Said E., Mohyud-Din S.T.: A reliable algorithm for solving tenth-order boundary value problems. Appl. Math. Inf. Sci. 6, 103–107 (2012)MathSciNetGoogle Scholar
  24. 24.
    Noor, M.A., Noor, K.I., Waseem, M.: Applications of quadrature formula for solving systems of nonlinear equations. Internat. J. Modern Phys. B (2012, accepted)Google Scholar
  25. 25.
    Ortega J.M., Rheinboldt W.C.: Iterative Solution of Nonlinear Equations in several variables. Academic Press, New York (1970)MATHGoogle Scholar
  26. 26.
    Traub J.F.: Iterative Methods for the Solution of Equations. Prentice-Hall, Englewood Cliffs (1964)MATHGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Muhammad Aslam Noor
    • 1
  • Muhammad Waseem
    • 2
  • Khalida Inayat Noor
    • 1
  • Eisa Al-Said
    • 3
  1. 1.Department of MathematicsCOMSATS Institute of Information TechnologyIslamabadPakistan
  2. 2.Department of Computer ScienceCOMSATS Institute of Information TechnologySahiwalPakistan
  3. 3.Mathematics Department, College of ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations