Optimization Letters

, Volume 6, Issue 6, pp 1081–1099

A time-based pheromone approach for the ant system

Original Paper

Abstract

The ant system (AS) is a metaheuristic approach originally developed for solving the traveling salesman problem. AS has been successfully applied to various hard combinatorial optimization problems and different variants have been proposed in the literature. In this paper, we introduce a time-based pheromone approach for AS (TbAS). Due to this nature TbAS is applicable to routing problems involving time-windows. The novelty in TbAS is the multi-layer pheromone network structure which implicitly utilizes the service time information associated with the customers as a heuristic information. To investigate the performance of TbAS, we use the well-known vehicle routing problem with time-windows as our testbed and we conduct an extensive computational study using the Solomon (Algorithms for the vehicle routing and scheduling problems with time window constraints 35:254–265, 1987) instances. Our results reveal that the proposed time-based pheromone approach is effective in obtaining good quality solutions.

Keywords

Ant systems Vehicle routing Time windows Metaheuristics Ant colony optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alvarenga G.B., Mateus G.R., Tomi G.: A genetic and set partitioning two-phase approach for the vehicle routing problem with time windows. Comput. Oper. Res. 34, 1561–1584 (2007)MATHCrossRefGoogle Scholar
  2. 2.
    Badeau P., Guertin F., Gendreau M., Potvin J., Taillard E.: A parallel tabu search heuristic for the vehicle routing problem with time windows. Transp. Res. C-Emer 5, 109–122 (1997)CrossRefGoogle Scholar
  3. 3.
    Bräysy O., Gendreau M.: Vehicle routing problem with time windows, Part I: route construction and local search algorithms. Transp. Sci. 39, 104–118 (2005)CrossRefGoogle Scholar
  4. 4.
    Bräysy O., Gendreau M.: Vehicle routing problem with time windows, Part II: metaheuristics. Transp. Sci. 39, 119–139 (2005)CrossRefGoogle Scholar
  5. 5.
    Bullnheimer B., Hartl R.F., Strauss C.: A new rank-based version of the ant system: a computational study. Cent. Eur. J. Oper. Res. Econ. 7, 25–38 (1999)MathSciNetMATHGoogle Scholar
  6. 6.
    Bullnheimer B., Hartl R.F., Strauss C.: An improved ant system algorithm for the vehicle routing problem. Ann. Oper. Res. 89, 319–328 (1999)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Cordeau J-F., Laporte G., Mercier A.: A unified tabu search heuristic for vehicle routing problems with time windows. J. Oper. Res. Society 52, 928–936 (2001)MATHCrossRefGoogle Scholar
  8. 8.
    Dorigo M.: Ant colony optimization. Scholarpedia 2(3), 1461 (2010)CrossRefGoogle Scholar
  9. 9.
    Dorigo M., Gambardella L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1, 53–66 (1997)CrossRefGoogle Scholar
  10. 10.
    Dorigo M., Maniezzo V., Colorni A.: The ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B 26, 29–41 (1996)CrossRefGoogle Scholar
  11. 11.
    Dorigo M., Stützle T.: Ant Coloy Optimization. The MIT Press, London (2004)Google Scholar
  12. 12.
    Eglese R., Maden W., Slater A.: A road timetableTM to aid vehicle routing and scheduling. Comput. Oper. Res. 33, 3508–3519 (2006)MATHCrossRefGoogle Scholar
  13. 13.
    Ellabib I., Basir O.A., Calamai P.: An experimental study of a simple ant c. ANTS2002: Lect. Notes Comput. Sci. 2463, 53–64 (2002)CrossRefGoogle Scholar
  14. 14.
    Fleischmann B., Gietz M., Gnutzmann S.: Time-varying travel times in vehicle routing. Transp. Sci. 38, 160–173 (2004)CrossRefGoogle Scholar
  15. 15.
    Floudas C.A., Pardalos P.M.: Encyclopedia of Optimization. Springer, New York (2009)MATHCrossRefGoogle Scholar
  16. 16.
    Gambardella L.M., Taillard E., Agazzi G.: MACS-VRPTW: a multiple ant colony system for vehicle routing problems with time windows. In: Corne, D., Dorigo, M., Glover, F. (eds) New Ideas in Optimization., pp. 63–76. McGraw-Hill, London (1999)Google Scholar
  17. 17.
    Garcia-Najera A., Bullinaria J.A.: An improved multi-objective evolutionary algorithm for the vehicle routing problem with time windows. Comput. Oper. Res. 38, 287–300 (2011)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Jung, S., Moon, B-R.: A hybrid genetic algorithm for the vehicle routing problem with time windows. In: Proceedings of the 2002 Genetic and Evolutionary Computation Conference (GECCO 2002), pp. 1309–1316. Morgan Kaufmann Publishers, San Francisco (2002)Google Scholar
  19. 19.
    Koskosidis Y.A., Powell W.B., Solomon M.M.: An optimization-based heuristic for vehicle routing and scheduling with soft time window constraints. Transp. Sci. 26, 69–85 (1992)MATHCrossRefGoogle Scholar
  20. 20.
    Muter İ., Birbil Ş.İ., Şahin G.: Combination of metaheuristic and exact algorithms for solving set covering-type optimization problems. INFORMS J. Comput. 22, 603–619 (2010)CrossRefGoogle Scholar
  21. 21.
    Oliveira H.C.B., Vasconcelos G.C.: A hybrid search method for the vehicle routing problem with time windows. Ann. Oper. Res. 180(1), 125–144 (2008)CrossRefGoogle Scholar
  22. 22.
    Ombuki B., Ross B.J., Hanshar F.: Multi-objective genetic algorithms for vehicle routing problem with time windows. Appl. Intell. 24, 17–30 (2006)CrossRefGoogle Scholar
  23. 23.
    Pardalos P.M., Resende M.G.C.: Handbook of Applied Optimization. Oxford University Press, New York (2002)MATHGoogle Scholar
  24. 24.
    Pisinger D., Ropke S.: A general heuristic for vehicle routing problems. Comput. Oper. Res. 34, 2403–2435 (2007)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Rochat Y., Taillard E.D.: Probabilistic diversification and intensification in local search for vehicle routing. J. Heuristics 1, 147–167 (1995)MATHCrossRefGoogle Scholar
  26. 26.
    Rousseau, L.M., Gendreau, M., Pesant, G.: Using constraint-based operators with variable neighborhood search to solve the vehicle routing problem with time windows. In: Proceedings of the 1999 Workshop on Integration of AI and OR techniques in Constraint Programming for Combinatorial Optimization Problems (CP-AI-OR’99), pp. 43–58. Ferrara (1999)Google Scholar
  27. 27.
    Savelsbergh M.W.P.: The vehicle routing problem with time windows: minimizing route duration. ORSA J. Comput. 4, 146–154 (1992)MATHCrossRefGoogle Scholar
  28. 28.
    Shaw, P.: Using constraint programming and local search methods to solve vehicle routing problems. In: Maher, M., Puget, J.F. (eds.) Principles and Practice of Constraint Programming (CP’98). Lect. Notes Comput. Sci. Springer, Berlin, pp. 417–431 (1998)Google Scholar
  29. 29.
    Solomon M.M.: Algorithms for the vehicle routing and scheduling problems with time window constraints. Oper. Res. 35, 254–265 (1987)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Stützle, T., Hoos, H.H.: The MAX-MIN ant system and local search for the traveling salesman problem. In: Bäck, T., Michalewicz, Z., Yao, X. (eds.) Proceedings of the 1997 IEEE International Conference on Evolutionary Computation (ICEC’97), pp. 309–314. IEEE Press, Piscataway (1997)Google Scholar
  31. 31.
    Tan K.C., Lee L.H., Zhu Q.L., Ou K.: Heuristic methods for vehicle routing problem with time windows. Artif. Intell. Eng. 15, 281–295 (2001)CrossRefGoogle Scholar
  32. 32.
    Toth P., Vigo D.: The vehicle routing problem. SIAM Monographs on Discrete Mathematics and Applications, Philadelphia (2002)MATHCrossRefGoogle Scholar
  33. 33.
    Zufferey, N.: Optimization by ant algorithms: possible roles for an individual ant. Optim. Lett. (2011). doi:10.1007/s11590-011-0327-x

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Faculty of Engineering and Natural SciencesSabanci UniversityIstanbulTurkey

Personalised recommendations