Optimization Letters

, Volume 7, Issue 3, pp 467–479 | Cite as

An improved bit parallel exact maximum clique algorithm

  • Pablo San Segundo
  • Fernando Matia
  • Diego Rodriguez-Losada
  • Miguel Hernando
Original Paper

Abstract

This paper describes new improvements for BB-MaxClique (San Segundo et al. in Comput Oper Resour 38(2):571–581, 2011), a leading maximum clique algorithm which uses bit strings to efficiently compute basic operations during search by bit masking. Improvements include a recently described recoloring strategy in Tomita et al. (Proceedings of the 4th International Workshop on Algorithms and Computation. Lecture Notes in Computer Science, vol 5942. Springer, Berlin, pp 191–203, 2010), which is now integrated in the bit string framework, as well as different optimization strategies for fast bit scanning. Reported results over DIMACS and random graphs show that the new variants improve over previous BB-MaxClique for a vast majority of cases. It is also established that recoloring is mainly useful for graphs with high densities.

Keywords

Maximum clique Branch and bound Exact search Graph 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Karp, R.M.: In: Miller, R.E., Thatcher, J.W. (eds.) Reducibility among Combinatorial Problems, pp. 85–103. Plenum, New York (1972)Google Scholar
  2. 2.
    Bahadur D.K.C., Akutsu T., Tomita E., Seki T., Fujijama A.: Point matching under non-uniform distortions and protein side chain packing based on efficient maximum clique algorithms. Genome Inform. 13, 143–152 (2006)Google Scholar
  3. 3.
    Butenko S., Wilhelm W.E.: Clique-detection models in computational biochemistry and genomics. Eur. J. Operat. Res. 173, 1–17 (2006)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Hotta K., Tomita E., Takahashi H.: A view invariant human FACE detection method based on maximum cliques. Trans. IPSJ 44(SIG14(TOM9)), 57–70 (2003)Google Scholar
  5. 5.
    San Segundo P., Rodríguez-Losada D., Matía F., Galán R.: Fast exact feature based data correspondence search with an efficient bit-parallel MCP solver. Appl. Intel. 32(3), 311–329 (2010)CrossRefGoogle Scholar
  6. 6.
    Bomze I.M., Budinich M., Pardalos P.M., Pelillo M.: HandBook of Combinatorial Optimization. Supplement A, pp. 1–74. Kluwer Academic Publishers, Dordrecht (1999)CrossRefGoogle Scholar
  7. 7.
    Wood D.R.: An algorithm for finding a maximum clique in a graph. Operat. Res. Lett. 21, 211–217 (1977)CrossRefGoogle Scholar
  8. 8.
    Carraghan R., Pardalos P.M.: An exact algorithm for the maximum clique problem. Operat. Res. Lett. 9, 375–382 (1990)MATHCrossRefGoogle Scholar
  9. 9.
    Östergård P.R.J.: A fast algorithm for the maximum clique problem. Discrete Applied Mathematics 120(1), 97–207 (2002)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Tomita, E., Seki, T.: An efficient branch and bound algorithm for finding a maximum clique. In: Calude, C., Dinneen, M., Vajnovszki, V. (eds) Discrete Mathematics and Theoretical Computer Science. LNCS, vol. 2731, pp. 278–289, Springer, Berlin (2003)Google Scholar
  11. 11.
    Konc J., Janečič D.: An improved branch and bound algorithm for the maximum clique problem. MATCH Commun. Math. Comput. Chem. 58, 569–590 (2007)MathSciNetGoogle Scholar
  12. 12.
    Tomita, E., Sutani, Y., Higashi, T., Takahashi, S., Wakatsuki, M.: A simple and faster branch-and-bound algorithm for finding a maximum clique. In: Rahman MS, Fujita S. (eds.) Proceedings of the 4th International Workshop on Algorithms and Computation. Lecture Notes in Computer Science, vol. 5942, pp. 191–203. Springer, Berlin (2010)Google Scholar
  13. 13.
    San Segundo, P., Rodriguez-Losada, D., Jimenez, A.: An exact bit-parallel algorithm for the maximum clique problem. Comput. Oper. Resour. 38(2), 571–581 (2011)Google Scholar
  14. 14.
    Johnson, D.S., Trick, M.A. (eds): Cliques, coloring and Satisfiability. DIMACS Series in Discrete Mathematics and Theoretical Computer Science 26. American Mathematical Society, Providence (1996)Google Scholar
  15. 15.
    Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Chaff, S.M.: Engineering an efficient SAT solver. In: XXXVIII Proceedings of Design Automation Conference (DAC ’01), pp. 530–535. ACM, New York (2001)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Pablo San Segundo
    • 1
  • Fernando Matia
    • 1
  • Diego Rodriguez-Losada
    • 1
  • Miguel Hernando
    • 1
  1. 1.Center of Automatic Control and Robotics-CAR (UPM-CSIC)MadridSpain

Personalised recommendations