Advertisement

Optimization Letters

, Volume 7, Issue 2, pp 407–413 | Cite as

Optimal solutions for the double row layout problem

  • André R. S. AmaralEmail author
Original Paper

Abstract

The double row layout problem is how to allocate a given set of n machines on both sides of a straight line corridor so that the total cost of transporting materials between machines is minimized. This is a very difficult combinatorial optimization problem with important applications in industry. We formulate the problem as a mixed-integer program. Computational tests show that the proposed formulation presents a far superior performance than that of a previously published model.

Keywords

Double row layout problem Machine layout problem Facility layout Integer programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amaral A.R.S.: On the exact solution of a facility layout problem. Eur. J. Oper. Res. 173(2), 508–518 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Amaral A.R.S.: An exact approach for the one-dimensional facility layout problem. Oper. Res. 56, 1026–1033 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Amaral A.R.S.: A new lower bound for the single row facility layout problem. Discrete Appl. Math. 157(1), 183–190 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Amaral, A.R.S., Letchford, A.N.: A polyhedral approach to the single-row facility layout problem, Tech. Rep., Department of Management Science, Lancaster University (2008)Google Scholar
  5. 5.
    Anjos M.F., Kennings A., Vannelli A.: A semidefinite optimization approach for the single-row layout problem with unequal dimensions. Discrete Optim. 2, 113–122 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Anjos M.F., Vannelli A.: Computing globally optimal solutions for single-row layout problems using semidefinite programming and cutting planes. INFORMS J. Comput. 20(4), 611–617 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Anjos M.F., Yen G.: Provably near-optimal solutions for very large single-row facility layout problems. Optim. Methods Softw. 24(4), 805–817 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Chung J., Tanchoco J.M.A.: The double row layout problem. Int. J. Prod. Res. 48(3), 709–727 (2010)zbMATHCrossRefGoogle Scholar
  9. 9.
    Coll P.E., Ribeiro C.C., Souza C.C.: Multiprocessor scheduling under precendence constraints: polyhedral results. Discrete Appl. Math. 154, 770–801 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    de Alvarenga A.G., Negreiros-Gomes F.J., Mestria M.: Metaheuristic methods for a class of the facility layout problem. J. Intell. Manuf. 11, 421–430 (2000)CrossRefGoogle Scholar
  11. 11.
    Grötschel M., Jünger M., Reinelt G.: A cutting plane algorithm for the linear ordering problem. Oper. Res. 32, 1195–1220 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Grötschel M., Jünger M., Reinelt G.: Facets of the linear ordering polytope. Math. Progr. 33, 43–60 (1985)zbMATHCrossRefGoogle Scholar
  13. 13.
    Grötschel M., Wakabayashi Y.: A cutting plane algorithm for a clustering problem. Math. Progr. Ser. B 45, 59–96 (1989)zbMATHCrossRefGoogle Scholar
  14. 14.
    Grötschel M., Wakabayashi Y.: Facets of the clique partitioning polytope. Math. Progr. 47, 367–387 (1990)zbMATHCrossRefGoogle Scholar
  15. 15.
    Heragu S.S.: Facilities Design, 2nd edn. iUniverse, Bloomington (2006)Google Scholar
  16. 16.
    Heragu S.S., Alfa A.S.: Experiment analysis of simulated annealing based algorithms for the layout problem. Eur. J. Oper. Res. 57(2), 190–202 (1992)zbMATHCrossRefGoogle Scholar
  17. 17.
    Heragu S.S., Kusiak A.: Machine layout problem in flexible manufacturing systems. Oper. Res. 36(2), 258–268 (1988)CrossRefGoogle Scholar
  18. 18.
    Heragu S.S., Kusiak A.: Efficient models for the facility layout problem. Eur. J. Oper. Res. 53, 1–13 (1991)zbMATHCrossRefGoogle Scholar
  19. 19.
    Kumar S., Asokan P., Kumanan S., Varma B.: Scatter search algorithm for single row layout problem in FMS. Adv. Prod. Eng. Manag. 3, 193–204 (2008)Google Scholar
  20. 20.
    Love R.F., Wong J.Y.: On solving a one-dimensional space allocation problem with integer programming. INFOR 14(2), 139–143 (1976)zbMATHGoogle Scholar
  21. 21.
    Picard J.-C., Queyranne M.: On the one-dimensional space allocation problem. Oper. Res. 29(2), 371–391 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Samarghandi H., Eshghi K.: An efficient tabu algorithm for the single row facility layout problem. Eur. J. Oper. Res. 205, 98–105 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Samarghandi H., Taabayan P., Jahantigh F.F.: A particle swarm optimization for the single row facility layout problem. Comput. Ind. Eng. 58, 529–534 (2010)CrossRefGoogle Scholar
  24. 24.
    Sherali H.D., Fraticelli B.M.P., Meller R.D.: Enhanced model formulations for optimal facility layout. Oper. Res. 51, 629–644 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Simmons D.M.: One-dimensional space allocation: an ordering algorithm. Oper. Res. 17, 812–826 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Simmons D.M.: A further note on one-dimensional space allocation. Oper. Res. 19, 249 (1971)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Solimanpur M., Vrat P., Shankar R.: An ant algorithm for the single row layout problem in flexible manufacturing systems. Comput. Oper. Res. 32(3), 583–598 (2005)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Departamento de InformáticaUniversidade Federal do Espírito Santo (UFES)VitóriaBrazil

Personalised recommendations