Optimization Letters

, Volume 7, Issue 1, pp 145–155 | Cite as

Best proximity points: approximation and optimization

Original Paper

Abstract

A best proximity point theorem explores the existence of an optimal approximate solution, known as a best proximity point, to the equations of the form Tx = x where T is a non-self mapping. The purpose of this article is to establish some best proximity point theorems for non-self non-expansive mappings, non-self Kannan- type mappings and non-self Chatterjea-type mappings, thereby producing optimal approximate solutions to some fixed point equations. Also, algorithms for determining such optimal approximate solutions are furnished in some cases.

Keywords

Optimal approximate solution Fixed point Best proximity point Contraction Cyclic contraction Non-expansive map Kannan-type mapping Chatterjea-type mapping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Thagafi, M.A., Shahzad, N.: Best proximity sets and equilibrium pairs for a finite family of multimaps. Fixed Point Theory Appl. 2008, Art. ID 457069, 10 ppGoogle Scholar
  2. 2.
    Al-Thagafi M.A., Shahzad N.: Convergence and existence results for best proximity points. Nonlinear Anal. 70(10), 3665–3671 (2009)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Al-Thagafi M.A., Shahzad N.: Best proximity pairs and equilibrium pairs for Kakutani multimaps. Nonlinear Anal. 70(3), 1209–1216 (2009)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Chatterjea S.K.: Fixed point theorems. Comptes Rend. Acad. Bulg. Sci. 25, 727–730 (1972)MathSciNetMATHGoogle Scholar
  5. 5.
    Di Bari C., Suzuki T., Vetro C.: Best proximity points for cyclic Meir-Keeler contractions. Nonlinear Anal. 69(11), 3790–3794 (2008)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Eldred A.A., Kirk W.A., Veeramani P.: Proximal normal structure and relatively nonexpansive mappings. Stud. Math. 171, 283–293 (2005)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Eldred A.A., Veeramani P.: Existence and convergence of best proximity points. J. Math. Anal. Appl. 323, 1001–1006 (2006)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Fan K.: Extensions of two fixed point theorems of F.E.Browder. Math. Z. 112, 234–240 (1969)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Kannan R.: Some results on fixed points. Bull. Calcutta Math. Soc. 60, 71–76 (1968)MathSciNetMATHGoogle Scholar
  10. 10.
    Karpagam, S., Agrawal, S.: Best proximity point theorems for p-cyclic Meir-Keeler contractions. Fixed Point Theory Appl. 2009, Art. ID 197308, 9 ppGoogle Scholar
  11. 11.
    Kim W.K., Kum S., Lee K.H.: On general best proximity pairs and equilibrium pairs in free abstract economies. Nonlinear Anal. 68(8), 2216–2227 (2008)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Kirk W.A., Reich S., Veeramani P.: Proximal retracts and best proximity pair theorems. Numer. Func. Anal. Optim. 24, 851–862 (2003)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Pardalos P.M., Rassias T.M., Khan A.A.: Nonlinear Analysis and Variational Problems. Springer, Berlin (2010)MATHCrossRefGoogle Scholar
  14. 14.
    Piatek B.: On cyclic Meir-Keeler contractions in metric spaces. Nonlinear Anal. 74, 35–40 (2011)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Prolla J.B.: Fixed point theorems for set valued mappings and existence of best approximations. Numer. Funct. Anal. Optim. 5, 449–455 (1982–1983)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Reich S.: Approximate selections, best approximations, fixed points and invariant sets. J. Math. Anal. Appl. 62, 104–113 (1978)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Sadiq Basha S.: Extensions of Banach’s contraction principle. Numer. Funct. Anal. Optim. 31, 569–576 (2010)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Sadiq Basha S.: Best proximity points: global optimal approximate solutions. J. Glob. Optim. 49, 15–21 (2011)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Sadiq Basha, S.: Common best proximity points: global minimal solutions. TOP. doi:10.1007/s11750-011-0171-2
  20. 20.
    Sadiq Basha, S.: Global optimal approximate solutions. Optim. Lett. doi:10.1007/s11590-010-0227-5
  21. 21.
    Sadiq Basha, S.: Best proximity points: optimal solutions. J. Optim. Theory Appl. doi:10.1007/s10957-011-9869-4
  22. 22.
    Sadiq Basha, S.: Common best proximity points: global minimization of multi-objective functions. J. Glob. Optim. doi:10.1007/s10898-011-9760-8
  23. 23.
    Sadiq Basha S.: Best proximity point theorems generalizing the contraction principle. Nonlinear Anal. 74, 5844–5850 (2011)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Sadiq Basha, S.: Best proximity point theorems., J. Approx. Theory. doi:10.1016/j.jat.2011.06.012
  25. 25.
    Sadiq Basha S., Shahzad N., Jeyaraj R.: Common best proximity points: global optimization of multi-objective functions. Appl. Math. Lett. 24, 883–886 (2011)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Sadiq Basha S., Veeramani P.: Best approximations and best proximity pairs. Acta. Sci. Math. (Szeged) 63, 289–300 (1997)MathSciNetGoogle Scholar
  27. 27.
    Sadiq Basha S., Veeramani P.: Best proximity pair theorems for multifunctions with open fibres. J. Approx. Theory 103, 119–129 (2000)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Sadiq Basha S., Veeramani P., Pai D.V.: Best proximity pair theorems. Indian J. Pure Appl. Math. 32, 1237–1246 (2001)MathSciNetMATHGoogle Scholar
  29. 29.
    Sehgal V.M., Singh S.P.: A generalization to multifunctions of Fan’s best approximation theorem. Proc. Am. Math. Soc. 102, 534–537 (1988)MathSciNetMATHGoogle Scholar
  30. 30.
    Sehgal V.M., Singh S.P.: A theorem on best approximations. Numer. Funct. Anal. Optim. 10, 181–184 (1989)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Shahzad N., Sadiq Basha S., Jeyaraj R.: Common best proximity points: global optimal solutions. J. Optim. Theory Appl. 148, 69–78 (2011)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Srinivasan P.S.: Best proximity pair theorems. Acta Sci. Math. (Szeged) 67, 421–429 (2001)MathSciNetMATHGoogle Scholar
  33. 33.
    Vetrivel V., Veeramani P., Bhattacharyya P.: Some extensions of Fan’s best approximation theorem. Numer. Funct. Anal. Optim. 13, 397–402 (1992)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Vetro C.: Best proximity points: convergence and existence theorems for p-cyclic mappings. Nonlinear Anal. 73, 2283–2291 (2010)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Wlodarczyk K., Plebaniak R., Banach A.: Best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces. Nonlinear Anal. 70, 3332–3341 (2009)MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Wlodarczyk, K., Plebaniak, R., Banach, A.: Erratum to: “Best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces” [Nonlinear Anal. 70, 3332–3341 (2009). doi:10.1016/j.na.2008.04.037]. Nonlinear Anal. 71, 3583–3586 (2009)Google Scholar
  37. 37.
    Wlodarczyk K., Plebaniak R., Obczynski C.: Convergence theorems, best approximation and best proximity for set-valued dynamic systems of relatively quasi-asymptotic contractions in cone uniform spaces. Nonlinear Anal. 72, 794–805 (2010)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of MathematicsAnna UniversityChennaiIndia
  2. 2.Department of MathematicsKing Abdul Aziz UniversityJeddahSaudi Arabia
  3. 3.St. Joseph’s College Higher Secondary SchoolTrichyIndia

Personalised recommendations