Optimization Letters

, Volume 7, Issue 1, pp 89–100 | Cite as

Efficient multi-objective tabu search for emergency equipment maintenance scheduling in disaster rescue

  • Yujun ZhengEmail author
  • Shengyong Chen
  • Haifeng Ling
Original Paper


The paper describes a mathematical model of the emergency equipment maintenance scheduling problem particularly in disaster rescue operations, which aims to achieve a good balance between operational capability achieved by maintenance, cost-effectiveness, maintenance risks, and reserved maintenance capability for sustainable operations. We design a compact solution encoding that greatly facilitates the search process, and develop an efficient multi-objective tabu search algorithm that evolves a set of solutions towards the Pareto optimal frontier, using a weighted function based on the decision-maker’s preference to guide the search procedures. Simulation experiments and real-world application results demonstrate the effectiveness of our approach.


Multi-objective optimization Tabu search Equipment maintenance scheduling Neighboring structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ai B., Wu C.: Genetic and simulated annealing algorithm and its application to equipment maintenace resource optimization. Fire Control Command Control 35, 144–145,149 (2010)Google Scholar
  2. 2.
    Baykasoglu A., Owen S., Gindy N.: A taboo search based approach to find the Pareto optimal set in multiple objective optimisation. J. Eng. Optim. 31, 731–748 (1999)CrossRefGoogle Scholar
  3. 3.
    Chinchuluun A., Pardalos P.M.: A survey of recent developments in multiobjective optimization. Ann. Oper. Res. 154, 29–50 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Constantin, Z., Pardalos, P.M. (eds): Handbook of Multicriteria Analysis. Springer, New York (2010)zbMATHGoogle Scholar
  5. 5.
    Czyzac P., Jaszkiewicz A.: Pareto simulated annealing—a metaheuristic technique for multiple objective combinatorial optimization. J. Multicriteria Decis. Anal. 7, 34–47 (1998)CrossRefGoogle Scholar
  6. 6.
    Deb K.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Tran. Evol. Comput. 6, 182–197 (2002)CrossRefGoogle Scholar
  7. 7.
    Fletcher J.D., Johnston R.: Effectiveness and cost benefits of computer-based decision aids for equipment maintenance. Comput. Hum. Behav. 18, 717–728 (2002)CrossRefGoogle Scholar
  8. 8.
    Gil C., Márquez A., Baõs R., Montoya M.G., Gómez M.G.: A hybrid method for solving multi-objective global optimization problems. J. Global Optim. 38, 265–281 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Glover F.: Tabu search, part I. ORSA. J. Comput. 1, 190–206 (1989)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Glover F.: Tabu search, part II. ORSA. J. Comput. 2, 4–32 (1990)zbMATHGoogle Scholar
  11. 11.
    Habenicht W.: Quad trees, a data structure for discrete vector optimization problems. Lect. Notes Econ. Math. Syst. 209, 136–145 (1983)CrossRefGoogle Scholar
  12. 12.
    Hajek J., Szollos A., Sistek J.: A new mechanism for maintaining diversity of Pareto archive in multi-objective optimization. Adv. Eng. Softw. 41, 1031–1057 (2010)zbMATHCrossRefGoogle Scholar
  13. 13.
    Hansen M.P.: Tabu search for multiobjective combinatorial optimization: TAMOCO. Control Cybern. 29, 799–818 (2000)zbMATHGoogle Scholar
  14. 14.
    Hertz A., Jaumard B., Ibeiro C.C., Formosinho Filho W.P.: A multi-criteria tabu search approach to cell formation problems in group technology with multiple objectives. Recherche Operationelle 28, 303–328 (1994)zbMATHGoogle Scholar
  15. 15.
    Jayakumar A., Asgarpoor S.: Maintenance optimization of equipment by linear programming. Prob. Eng. Inform. Sci. 20, 183–193 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Kleeman, M.P., Lamont, G.B.: Solving the aircraft engine maintenance scheduling problem using a multi-objective evolutionary algorithm. In: Coello, C.C., Aguirre, A.H., Zitzler, E. (eds.) Evolutionary Multi-Criterion Optimization. Lecture Notes in Computer Science, vol. 3410, pp. 782–796 (2005)Google Scholar
  17. 17.
    Kulturel-Konak S., Smith A.E., Norman B.A.: Multi-objective tabu search using a multinomial probability mass function. Eur. J. Oper. Res. 169, 918–931 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Pardalos, P.M., Siskos, Y., Zopounidis, C. (eds): Advances in Multicriteria Analysis. Kluwer, Dordrecht (1995)zbMATHGoogle Scholar
  19. 19.
    Pardalos, P.M., Migdalas, A., Pitsoulis, L. (eds): Pareto Optimality, Game Theory and Equilibria. Springer, New York (2008)zbMATHGoogle Scholar
  20. 20.
    Sun M., Steuer R.E.: Quad trees and linear list for identifying nondominated criterion vectors INFORM. J. Comput. 8, 367–375 (1996)zbMATHGoogle Scholar
  21. 21.
    Sun M.: A primogenitary linked quad tree data structure and its application to discrete multiple criteria optimization. Anal. Oper. Res. 147, 87–107 (2006)zbMATHCrossRefGoogle Scholar
  22. 22.
    Verma A.K., Ramesh P.G.: Multi-objective initial preventive maintenance scheduling for large engineering plants. Int. J. Reliab. Qual. Safe. Eng. 14, 241–250 (2007)CrossRefGoogle Scholar
  23. 23.
    Xu L., Han J., Xiao J.: A combinational forecasting model for aircraft equipment maintenance cost. Fire Control Command Control 33, 102–105 (2008)Google Scholar
  24. 24.
    Yang Y., Huang X.: Genetic algorithms based the optimizing theory and approaches to the distribution of the maintenance cost of weapon system. Math. Pract. Theory 24, 74–84 (2002)Google Scholar
  25. 25.
    Zitzler E., Deb K., Thiele L.: Comparison of multiobjective evolutionary algorithms: Emperical results. Evol. Comput. 8, 173–195 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.College of Computer Science and TechnologyZhejiang University of TechnologyHangzhouChina
  2. 2.Department of Mechanical EngineeringPLA University of Science and TechnologyNanjingChina

Personalised recommendations