Advertisement

Optimization Letters

, Volume 6, Issue 8, pp 1875–1881 | Cite as

Every maximally monotone operator of Fitzpatrick–Phelps type is actually of dense type

  • Heinz H. Bauschke
  • Jonathan M. Borwein
  • Xianfu Wang
  • Liangjin YaoEmail author
Original Paper

Abstract

We show that every maximally monotone operator of Fitzpatrick–Phelps type defined on a real Banach space must be of dense type. This provides an affirmative answer to a question posed by Stephen Simons in 2001 and implies that various important notions of monotonicity coincide.

Keywords

Fitzpatrick function Maximally monotone operator Monotone operator Multifunction Operator of type (D) Operator of type (FP) Operator of type (NI) Set-valued operator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bauschke, H.H., Borwein, J.M., Wang, X., Yao L.: For maximally monotone linear relations, dense type, negative-infimum type, and Fitzpatrick–Phelps type all coincide with monotonicity of the adjoint, submitted; http://arxiv.org/abs/1103.6239v1 (2011)
  2. 2.
    Bauschke H.H., Combettes P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, Berlin (2011)zbMATHCrossRefGoogle Scholar
  3. 3.
    Borwein J.M.: Maximal monotonicity via convex analysis. J. Convex Anal. 13, 561–586 (2006)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Borwein J.M.: Maximality of sums of two maximal monotone operators in general Banach space. Proc. Am. Math. Soc. 135, 3917–3924 (2007)zbMATHCrossRefGoogle Scholar
  5. 5.
    Borwein J.M.: Fifty years of maximal monotonicity. Optim. Lett. 4, 473–490 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Borwein J.M., Vanderwerff J.D.: Convex Functions. Cambridge University Press, Cambridge (2010)zbMATHGoogle Scholar
  7. 7.
    Burachik R.S., Iusem A.N.: Set-Valued Mappings and Enlargements of Monotone Operators. Springer, Berlin (2008)Google Scholar
  8. 8.
    Fabian M., Habala P., Hájek P., Montesinos Santalucía V., Pelant J., Zizler V.: Functional Analysis and Infinite-Dimensional Geometry. Springer, Berlin (2001)zbMATHGoogle Scholar
  9. 9.
    Fitzpatrick, S.: Representing monotone operators by convex functions. In: Workshop/Miniconference on Functional Analysis and Optimization (Canberra 1988). Proceedings of the Centre for Mathematical Analysis, vol. 20, pp. 59–65, Australian National University, Canberra, Australia (1988)Google Scholar
  10. 10.
    Fitzpatrick S., Phelps R.R.: Bounded approximants to monotone operators on Banach spaces. Annales de l’Institut Henri PoincaréAnalyse Non Linéaire 9, 573–595 (1992)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Gossez J.-P.: Opérateurs monotones non linéaires dans les espaces de Banach non réflexifs. J. Math. Anal. Appl. 34, 371–395 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Marques Alves M., Svaiter B.F.: On Gossez type (D) maximal monotone operators. J. Convex Anal. 17, 1077–1088 (2010)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Megginson R.E.: An Introduction to Banach Space Theory. Springer, Berlin (1998)zbMATHCrossRefGoogle Scholar
  14. 14.
    Phelps R.R.: Convex Functions, Monotone Operators and Differentiability, 2nd edn. Springer, Berlin (1993)zbMATHGoogle Scholar
  15. 15.
    Phelps, R.R.: Lectures on maximal monotone operators, Extracta Mathematicae, vol. 12, pp. 193–230. http://arXiv.org/abs/math/9302209v1 (1997)
  16. 16.
    Rockafellar R.T., Wets R.J-B: Variational Analysis, 3rd edn. Springer, Berlin (2009)zbMATHGoogle Scholar
  17. 17.
    Simons S.: The range of a monotone operator. J. Math. Anal. Appl. 199, 176–201 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Simons S.: Minimax and Monotonicity. Springer, Berlin (1998)Google Scholar
  19. 19.
    Simons S.: Five kinds of maximal monotonicity. Set-Valued Var. Anal. 9, 391–409 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Simons S.: From Hahn-Banach to Monotonicity. Springer, Berlin (2008)zbMATHGoogle Scholar
  21. 21.
    Simons S.: Banach SSD Spaces and classes of monotone sets. J. Convex Anal. 18, 227–258 (2011)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Zălinescu C.: Convex Analysis in General Vector Spaces. World Scientific Publishing, New Jersey (2002)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Heinz H. Bauschke
    • 1
  • Jonathan M. Borwein
    • 2
  • Xianfu Wang
    • 1
  • Liangjin Yao
    • 1
    Email author
  1. 1.Mathematics, Irving K. Barber SchoolUniversity of British ColumbiaKelownaCanada
  2. 2.CARMA, University of NewcastleNewcastleAustralia

Personalised recommendations