Optimization Letters

, Volume 6, Issue 8, pp 1847–1853 | Cite as

Continuity of cone-convex functions

Original Paper

Abstract

In the paper, we show continuity of cone-convex set-valued maps by using nonconvex scalarization methods for sets.

Keywords

Set-valued maps Nonconvex scalarization Cone-convexity Cone-continuity Lipschitz continuity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adly S., Ernst E., Théra M.: Well-positioned closed convex sets and well-positioned closed convex functions. J. Global Optim. 29, 337–351 (2004)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Ekeland I., Temam R.: Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976)MATHGoogle Scholar
  3. 3.
    Huy N.Q., Yao J.-C.: Semi-infinite optimization under convex function perturbations: Lipshitz stability. J. Optim. Theory Appl. 148, 237–256 (2011)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Jeyakumer V.: Characterizing set containments involving infinite convex constraints and reverse-convex constraints. SIAM J. Optim. 13, 947–959 (2003)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Rockafellar R.T.: Convex Analysis. Princeton University Press, Princeton (1968)Google Scholar
  6. 6.
    Doagooei A.R., Mohebi H.: Dual characterizations of the set containments with strict cone-convex inequalities in Banach spaces. J. Global Optim. 43, 577–591 (2009)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Göpfert A., Riahi H., Tammer C., Zălinescu C.: Variational Methods in Partially Ordered Spaces. Springer, New York (2003)MATHGoogle Scholar
  8. 8.
    Jahn J.: Vector Optimization-Theory, Applications, and Extensions. Springer, Belrin (2004)MATHGoogle Scholar
  9. 9.
    Jeyakumer V., Lee G.M., Dihn N.: Characterizations of solution sets of convex vector minimization problems. Eur. J. Oper. Res. 174, 1396–1413 (2006)CrossRefGoogle Scholar
  10. 10.
    Kuroiwa D.: Convexity for Set-Valued Maps. Appl. Math. Lett. 9, 97–101 (1996)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Luc, D.T.: Theory of vector optimization. In: Lecture Notes in Economics and Mathematical Systems, vol. 319, Springer, Berlin (1989)Google Scholar
  12. 12.
    Popovici N.: Explicity quasiconvex set-valued optimization. J. Global Optim. 38, 103–118 (2007)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Hamel A., Löhne A.: Minimal element theorems and Ekeland’s principle with set relations. J. Nonlinear Convex Anal. 7, 19–37 (2006)MathSciNetMATHGoogle Scholar
  14. 14.
    Hernández E., Rodríguez-Marín L.: Nonconvex scalarization in set-optimization with set-valued maps. J. Math. Anal. Appl. 325, 1–18 (2007)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Kuwano I., Tanaka T., Yamada S.: Unified scalarization and Ky Fan minimax inequality for set-valued maps. J. Nonlinear Convex Anal. 11, 1–13 (2010)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Graduate School of Science and TechnologyNiigata UniversityNiigataJapan

Personalised recommendations