Advertisement

Optimization Letters

, Volume 6, Issue 7, pp 1265–1280 | Cite as

Adaptive image interpolation by cardinal splines in piecewise constant tension

  • Satoshi Matsumoto
  • Masaru KamadaEmail author
  • Renchin-Ochir Mijiddorj
Original Paper

Abstract

The cardinal spline in tension is modified to allow for different tensions in different sampling intervals. Varying the tension in proportion to an index of sharp change in image brightness, we obtain image interpolation results with less ringing artifacts compared to those by the cubic spline interpolation.

Keywords

Image interpolation Splines Dynamical systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahlberg J.H., Nilson E.N., Walsh J.L.: The Theory of Splines and Their Applications. Academic Press, London (1967)zbMATHGoogle Scholar
  2. 2.
    Asuni, N., Giachetti, A.: Accuracy improvements and artifacts removal in edge based image interpolation. In: Proceedings of the 3rd International Conference Computer Vision Theory and Applications, pp. 58–65 (2008)Google Scholar
  3. 3.
    Barendt, S., Fischer, B., Modersitzki, J.: A kernel representation for exponential splines with global tension. Proc. SPIE, 7245, 0I-1–0I-10 (2009)Google Scholar
  4. 4.
    Berg K., Ehtamo H.: Interpretation of Lagrange multipliers in nonlinear pricing problem. Optim. Lett. 4, 275–285 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Canny J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698 (1986)CrossRefGoogle Scholar
  6. 6.
    Chuah C.-S., Leou J.J.: An adaptive image interpolation algorithm for image/video processing. Pattern Recognit. 34, 2383–2393 (2001)zbMATHCrossRefGoogle Scholar
  7. 7.
    de Boor C.: Best approximation properties of spline functions of odd degree. J. Math. Mech. 12, 747–750 (1963)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Hao, J., Moloney, C.: A new direction adaptive scheme for image interpolation. In: Proceedings of the 2002 International Conference on Image Processing, vol. 3, pp. 369–372 (2002)Google Scholar
  9. 9.
    Hashemi S.M., Mokarami S., Nasrabadi E.: Dynamic shortest path problems with time-varying costs. Optim. Lett. 4, 147–156 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Ho Y.C., Kalman R.E., Narendra K.S.: Controllability of linear dynamical systems. Contrib. Diff. Eqs. 1, 189–213 (1963)MathSciNetGoogle Scholar
  11. 11.
    Holladay J.C.: Smoothest curve approximation Math. Tables Aids Comput. 11, 223–243 (1957)MathSciNetGoogle Scholar
  12. 12.
    Hou H.S., Andrews H.C.: Cubic splines for image interpolation and digital filtering. IEEE Trans. Acoustic Speech Signal Process. 26, 508–517 (1978)zbMATHCrossRefGoogle Scholar
  13. 13.
    Hu M., Tan J.: Adaptive osculatory rational interpolation for image processing. J. Comput. Appl. Math. 195, 46–53 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Kalman R.E.: A new approach to linear filtering and prediction problems. Trans. ASME 82(Series D), 35–45 (1960)Google Scholar
  15. 15.
    Kamada M., Toraichi K., Mori R.: Periodic spline orthonormal bases. J. Approx. Theory 55, 27–34 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Kim, J., Jin, S., Lee, H., Jeong, J.: New edge-guided interpolation algorithm based on weighted edge pattern analysis. In: Proceedings of the IEEE Picture Coding Symposium 2009. available online at the IEEE Xplore (2009)Google Scholar
  17. 17.
    Li X., Orchard M.T.: New edge-directed interpolation. IEEE Trans. Image Process. 10, 1521–1527 (2001)CrossRefGoogle Scholar
  18. 18.
    Liang L.: Image interpolation by blending kernels. IEEE Signal Process. Lett. 15, 805–808 (2008)CrossRefGoogle Scholar
  19. 19.
    Schoenberg I.J.: Contributions to the problem of approximation of equidistant data by analytic functions, Part A: On the problem of smoothing or graduation, a first class of analytic approximation formulas. Quart. Appl. Math. 4, 45–99 (1946)MathSciNetGoogle Scholar
  20. 20.
    Schoenberg I.J.: On interpolation by spline functions and its minimal properties. In: Butzer, P.L., Korevaar, J. (eds) On Approximation Theory, pp. 109–129. Birkhauser, Basel (1964)Google Scholar
  21. 21.
    Schoenberg I.J.: Cardinal Spline Interpolation. SIAM, Philadelphia (1973)zbMATHCrossRefGoogle Scholar
  22. 22.
    Schweikert D.G.: An interpolation curve using a spline in tension. J. Math. Phys. 45, 312–317 (1966)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Sontag E.D.: Mathematical Control Theory. Springer, New York (1990)zbMATHCrossRefGoogle Scholar
  24. 24.
    Thévenaz P., Blu T., Unser M.: Interpolation revisited. IEEE Trans. Med. Imaging 19, 739–758 (2000)CrossRefGoogle Scholar
  25. 25.
    Thévenaz P., Blu T., Unser M.: Image interpolation and resampling. In: Bankman, I. (eds) Handbook of Medical Imaging: Processing and Analysis, pp. 393–420. Academic Press, San Diego (2000)Google Scholar
  26. 26.
    Toraichi K., Yang S., Kamada M., Mori R.: Two-dimensional spline interpolation for image reconstruction. Pattern Recognit 21, 275–284 (1988)CrossRefGoogle Scholar
  27. 27.
    Unser M., Aldroubi A.: Fast B-spline transforms for continuous image representation and interpolation. IEEE Trans. Patt. Anal. Mach. Intell. 13, 277–285 (1991)CrossRefGoogle Scholar
  28. 28.
    Unser M., Aldroubi A., Eden M.: Polynomial spline signal approximations: filter design and asymptotic equivalence with Shannon’s sampling theorem. IEEE Trans. Info. Th. 38, 95–103 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Zhang L., Wu X.: An edge-guided image interpolation algorithm via directional filtering and data fusion. IEEE Trans. Image Process. 15, 2226–2238 (2006)CrossRefGoogle Scholar
  30. 30.
    Zhao Y.B., Fang S.-C., Lavery J.E.: Geometric dual formulation for first-derivative-based univariate cubic L 1 splines. J. Global Optim. 40, 589–621 (2008)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Satoshi Matsumoto
    • 1
  • Masaru Kamada
    • 1
    Email author
  • Renchin-Ochir Mijiddorj
    • 2
  1. 1.Department of Computer and Information Sciences, Faculty of EngineeringIbaraki UniversityHitachi, IbarakiJapan
  2. 2.Department of Programming and Didactics, School of Computer Science and Information TechnologyMongolian State University of EducationUlaanbaatarMongolia

Personalised recommendations