Optimization Letters

, Volume 6, Issue 8, pp 1753–1771 | Cite as

A branch-and-cut algorithm for the Steiner tree problem with delays

  • V. LeggieriEmail author
  • M. Haouari
  • C. Triki
Original Paper


In this paper, we investigate the Steiner tree problem with delays, which is a generalized version of the Steiner tree problem applied to multicast routing. For this challenging combinatorial optimization problem, we present an enhanced directed cut-based MIP formulation and an exact solution method based on a branch-and-cut approach. Our computational study reveals that the proposed approach can optimally solve hard dense instances.


Steiner tree problem Delay constraints Branch-and-cut method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Achterberg T., Koch T., Martin A.: Branching rules revisited. Oper. Res. Lett. 33(1), 42–54 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Althaus, E., Polzin, T., Daneshmand, S.V.: Improving linear programming approaches for the Steiner tree problem. In: Experimental and efficient algorithms. Lecture Notes in Computer Science, vol. 2647, pp. 1–14. Springer, Berlin (2003)Google Scholar
  3. 3.
    Aneja Y.P.: An integer linear programming approach to the Steiner problem in graphs. Networks 10(2), 167–178 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Applegate, D., Bixby, R., Cook W.: Finding cuts in the tsp (a preliminary report) (1995)Google Scholar
  5. 5.
    Ascheuer N., Fischetti M., Grötschel M.: Solving the asymmetric travelling salesman problem with time windows by branch-and-cut. Math. Program. 90(3, Ser. A), 475–506 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Ascheuer N., Fischetti M., Grötschel M.: A polyhedral study of the asymmetric traveling salesman problem with time windows. Networks 36(2), 69–79 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Costa A.M., Cordeau J.-F., Laporte G.: Fast heuristics for the Steiner tree problem with revenues, budget and hop constraints. Eur. J. Oper. Res. 190(1), 68–78 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Costa A.M., Cordeau J.F., Laporte G.: Models and branch-and-cut algorithms for the Steiner tree problem with revenues, budget and hop constraints. Networks 53(2), 141–159 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Du, D.Z., Lu, B., Ngo, H., Pardalos, P.M.: Steiner tree problems. In: Floudas, C., Pardalos, P. (eds.) Encyclopedia of Optimization, vol. 5, pp. 227–290 (2001)Google Scholar
  10. 10.
    Ghaboosi N., Haghighat A.T.: Tabu search based algorithms for bandwidth-delay-constrained least-cost multicast routing. Telecommun. Syst. 34(3–4), 147–166 (2007)CrossRefGoogle Scholar
  11. 11.
    Ghanwani A.: Neural and delay based heuristics for the Steiner problem in networks. Eur. J. Oper. Res. 108(2), 241–265 (1998)zbMATHCrossRefGoogle Scholar
  12. 12.
    Gouveia L.: Using the Miller-Tucker-Zemlin constraints to formulate a minimal spanning tree problem with Hop constraints. Comput. Oper. Res. 22(9), 959–970 (1995)zbMATHCrossRefGoogle Scholar
  13. 13.
    Johnson E.L., Nemhauser G.L., Savelsbergh M.W.P.: Progress in linear programming-based algorithms for integer programming: an exposition. INFORMS J. Comput. 12, 2–23 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Koch T., Martin A.: Solving Steiner tree problems in graphs to optimality. Networks 32(3), 207–232 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Koch, T., Martin, A., Voβ, S.: SteinLib.
  16. 16.
    Kompella V.P., Pasquale J., Polyzos G.C.: Multicast routing for multimedia communication. IEEE/ACM Trans. Netw. 1(3), 286–292 (1993)CrossRefGoogle Scholar
  17. 17.
    Kun Z., Heng W., Liu F.Y.: Distributed multicast routing for delay and delay variation-bounded Steiner tree using simulated annealing. Comput. Commun. 28(11), 1356–1370 (2005)CrossRefGoogle Scholar
  18. 18.
    Leggieri, V., Haouari, M., Layeb, S., Triki, C. The Steiner tree problem with delays: a compact formulation and reduction procedures. Discret. Appl. Math. (2011, in press)Google Scholar
  19. 19.
    Miller C.E., Tucker A.W., Zemlin R.A.: Integer programming formulation of traveling salesman problems. J. Assoc. Comput. Mach. 7(4), 326–329 (1960)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Nemhauser G.L., Wolsey L.A.: Integer and combinatorial optimization. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons Inc., New York (1988)Google Scholar
  21. 21.
    Oliveira C.A.S., Pardalos P.M.: A survey of combinatorial optimization problems in multicast routing. Comput. Oper. Res. 32(8), 1953–1981 (2005)zbMATHCrossRefGoogle Scholar
  22. 22.
    Oliveira C.A.S., Pardalos P.M.: Construction algorithms and approximation bounds for the streaming cache placement problem in multicast networks. Cybern. Syst. Anal. 41(6), 898–908 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Polzin T., Daneshmand S.V.: A comparison of Steiner tree relaxations. Discret. Appl. Math. J. Comb. Algorithms Inform. Comput. Sci. 112(1–3), 241–261 (2001)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Santos M., Drummond L.M.A., Uchoa E.: A distributed dual ascent algorithm for the hop-constrained Steiner tree problem. Oper. Res. Lett. 38(1), 57–62 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Sriram R., Manimaran G., Ram Murthy C.S.: Algorithms for delay-constrained low-cost multicast tree construction. Comput. Commun. 21(18), 1693–1706 (1998)CrossRefGoogle Scholar
  26. 26.
    Wolsey L.A.: Integer Programming. Wiley-Interscience, New York (1998)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Faculty of Computer ScienceFree University of Bozen-BolzanoBolzanoItaly
  2. 2.Dipartimento di MatematicaUniversità del SalentoLecceItaly
  3. 3.Combinatorial Optimization Research Group, ROIEcole Polytechnique de TunisieLa MarsaTunisia
  4. 4.Department of Industrial Engineering, Faculty of EngineeringOzyegin UniversityIstanbulTurkey
  5. 5.Princess Fatimah Alnijris’ Research Chair for AMT, College of EngineeringKing Saud UniversityRiyadhSaudi Arabia
  6. 6.Dipartimento di MatematicaUniversità del SalentoLecceItaly

Personalised recommendations