Optimization Letters

, Volume 6, Issue 8, pp 1657–1669 | Cite as

Minimization of vectors of curvilinear functionals on the second order jet bundle: sufficient efficiency conditions

Original Paper

Abstract

Strongly motivated by its possible applications in Mechanics, in our previous work (Pitea and Postolache (Optim. Lett. doi:10.1007/s11590-010-0272-0, 2011)), we initiated an optimization theory for the second order jet bundle. We considered the problem of minimization of vectors of curvilinear functionals (well known as mechanical work), thought as multi-time multi-objective variational problems, subject to PDE and/or PDI constraints. Within this framework, we introduced necessary conditions. As natural continuation of our results in Pitea and Postolache (Optim. Lett. doi:10.1007/s11590-010-0272-0, 2011), the present work introduces a study of sufficient efficiency conditions. While the background in Sect. 2 is introductory, the theory in Sect. 3 is new as a whole, containing our results.

Keywords

Lagrange 1-form density Multi-objective variational problem Quasiinvexity Efficiency 

Mathematics Subject Classification (2000)

49J35 58E17 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chinchuluun A., Pardalos P.M.: A survey of recent developments in multiobjective optimization. Ann. Oper. Res. 154(1), 29–50 (2007)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Hachimi M., Aghezzaf B.: Sufficiency and duality in differentiable multiobjective programming involving generalized type I functions. J. Math. Anal. Appl. 296, 382–392 (2004)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Hanson M.A.: On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 80, 545–550 (1981)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Kanniappan P.: Necessary conditions for optimality of nondifferentiable convex multiobjective programming. J. Optim. Theory Appl. 40(2), 167–174 (1983)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Mititelu Şt.: Extensions in invexity theory. J. Adv. Math. Stud. 1(1–2), 63–70 (2008)MathSciNetMATHGoogle Scholar
  6. 6.
    Mititelu Şt.: Optimality and duality for invex multi-time control problems with mixed constraints. J. Adv. Math. Stud. 2(1), 25–34 (2009)MathSciNetMATHGoogle Scholar
  7. 7.
    Mititelu Şt., Postolache M.: Mond–Weir dualities with Lagrangians for multiobjective fractional and non-fractional variational problems. J. Adv. Math. Stud. 3(1), 41–58 (2010)MathSciNetMATHGoogle Scholar
  8. 8.
    Mond B., Husain I.: Sufficient optimality criteria and duality for variational problems with generalized invexity. J. Aust. Math. Soc. Series B. 31, 108–121 (1989)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Nahak, C., Mohapatra, R.N.: Nonsmooth ρ−(η, θ)-invexity in multiobjective programming problems. Optim. Lett. (2010). doi:10.1007/s11590-010-0239-1
  10. 10.
    Pitea, A., Postolache, M.: Minimization of vectors of curvilinear functionals on the second order jet bundle. Necessary conditions, Optim. Lett. (2011). doi:10.1007/s11590-010-0272-0
  11. 11.
    Pitea A., Udrişte C., Mititelu Şt.: PDI & PDE-constrained optimization problems with curvilinear functional quotients as objective vectors. Balkan J. Geom. Appl. 14(2), 65–78 (2009)MATHGoogle Scholar
  12. 12.
    Pitea A., Udrişte C., Mititelu Şt.: New type dualities in PDI and PDE constrained optimization problems. J. Adv. Math. Stud. 2(1), 81–90 (2009)MathSciNetMATHGoogle Scholar
  13. 13.
    Pitea A.: Null Lagrangian forms on 2nd order jet bundles. J. Adv. Math. Stud. 3(1), 73–82 (2010)MathSciNetMATHGoogle Scholar
  14. 14.
    Preda V.: On efficiency and duality for multiobjective programs. J. Math. Anal. Appl. 166(2), 365–377 (1992)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Udrişte C., Postolache M.: Atlas of Magnetic Geometric Dynamics. Geometry Balkan Press, Bucharest (2001)MATHGoogle Scholar
  16. 16.
    Udrişte C., Dogaru O., Ţevy I.: Null Lagrangian forms and Euler–Lagrange PDEs. J. Adv. Math. Stud. 1(1–2), 143–156 (2008)MathSciNetMATHGoogle Scholar
  17. 17.
    Wang S.: Second-order necessary and sufficient conditions in multiobjective programming. Numer. Funct. Anal. Optim. 12(1–2), 237–252 (1991)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Faculty of Applied SciencesUniversity “Politehnica” of BucharestBucharestRomania

Personalised recommendations