Optimization Letters

, Volume 6, Issue 5, pp 827–840 | Cite as

On evolution of an information dynamic system and its generating operator

  • Roman V. BelavkinEmail author
Original Paper


States of a dynamical information system can be represented by points on a statistical manifold—a subset of a vector space endowed with an information topology. An evolution of such a system is considered here with respect to changes in information rather than changes in time, because differences between states are represented by an information distance. Here we consider an optimal system maximizing a utility of an abstract information resource, and then analyze properties of information such that an optimal system is described by an evolution operator or a semigroup. The latter is generated by an operator that can be interpreted as a utility, payoff or a fitness function. We discuss the advantages and applications of the proposed approach.


Utility of information Evolution operator Semigroup Monotone operator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belavkin R.V.: Information trajectory of optimal learning. In: Hirsch, M.J, Pardalos, P.M, Murphey, R (eds) Dynamics of Information Systems: Theory and Applications, Springer Optimization and Its Applications Series, vol. 40, Springer, Berlin (2010)Google Scholar
  2. 2.
    Belavkin, R.V.: Utility and value of information in cognitive science, biology and quantum theory. In: Accardi, L., Freudenberg, W., Ohya, M. (eds.) Quantum Bio-Informatics III, QP-PQ: Quantum Probability and White Noise Analysis, vol. 26. World Scientific (2010)Google Scholar
  3. 3.
    Bellman R.E.: Dynamic Programming. Princeton University Press, Princeton (1957)zbMATHGoogle Scholar
  4. 4.
    Bourbaki N.: Eléments de mathématiques. Intégration. Hermann, Paris (1963)Google Scholar
  5. 5.
    Broom M., Cannings C., Vickers G.T.: Sequential methods in patterns of ESS’s. J. Math. Biol. 22, 597–615 (1994)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chentsov, N.N.: Statistical Decision Rules and Optimal Inference. Nauka, Moscow (1972), English translation: AMS, Providence (in Russian) (1982)Google Scholar
  7. 7.
    Davey B.A., Priestley H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  8. 8.
    Grundel D., Murphey R., Pardalos P., Prokopyev O. (eds) Cooperative Systems: Control and Optimization, Lecture Notes in Economics and Mathematical Systems, vol. 588. Springer, Berlin (2007)Google Scholar
  9. 9.
    Hirsch, M.J., Commander, C., Pardalos, P.M., Murphey, R. (eds.) Optimization and Cooperative Control Strategies: Proceedings of the 8th International Conference on Cooperative Control and Optimization, Lecture Notes in Control and Information Sciences, vol. 381. Springer, Berlin (2009)Google Scholar
  10. 10.
    Hirsch M.J., Pardalos P.M., Murphey R. (eds) Dynamics of Information Systems, Springer Optimization and Its Applications, vol. 40. Springer, Berlin (2010)Google Scholar
  11. 11.
    Kachurovskii R.I.: Nonlinear monotone operators in Banach spaces. Russian Math. Surv. 23(2), 117–165 (1968)CrossRefGoogle Scholar
  12. 12.
    Kullback S., Leibler R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Moreau, J.J.: Functionelles Convexes. Lectrue Notes, Séminaire sur les équations aux derivées partielles. Collége de France, Paris (1967)Google Scholar
  14. 14.
    von Neumann J., Morgenstern O.: Theory of Games and Economic Behavior, 1st edn. Princeton University Press, Princeton (1944)zbMATHGoogle Scholar
  15. 15.
    Nowak M.A.: Evolutionary Dynamics: Exploring the Equations of Life. Harvard University Press, Cambridge (2006)zbMATHGoogle Scholar
  16. 16.
    Pavel N.H.: Nonlinear Evolution Operators and Semigroups: Applications to Partial Differential Equations, Lecture Notes in Mathematics, vol. 1260. Springer, Berlin (1987)Google Scholar
  17. 17.
    Pazy A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44. Springer, Berlin (1983)CrossRefGoogle Scholar
  18. 18.
    Pontryagin L.S, Boltyanskii V.G, Gamkrelidze R.V, Mishchenko E.F.: The mathematical theory of optimal processes. Wiley, New York (1962) (translated from Russian)zbMATHGoogle Scholar
  19. 19.
    Rockafellar, R.T.: Conjugate Duality and Optimization, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 16. Society for Industrial and Applied Mathematics, PA (1974)Google Scholar
  20. 20.
    Stratonovich R.L.: value of information. Izvestiya USSR Acad. Sci. Tech. Cybern. 5, 3–12 (1965) (in Russian)Google Scholar
  21. 21.
    Tikhomirov, V.M.: Convex analysis. In: Analysis II, Encyclopedia of Mathematical Sciences, vol. 14, pp. 1–92. Springer, Berlin (1990)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.School of Engineering and Information SciencesMiddlesex UniversityLondonUK

Personalised recommendations