Advertisement

Optimization Letters

, Volume 5, Issue 3, pp 435–451 | Cite as

Generation of networks with prescribed degree-dependent clustering

  • Chrysanthos E. GounarisEmail author
  • Karthikeyan Rajendran
  • Ioannis G. Kevrekidis
  • Christodoulos A. Floudas
Original Paper

Abstract

We propose a systematic, rigorous mathematical optimization methodology for the construction, “on demand,” of network structures that are guaranteed to possess a prescribed collective property: the degree-dependent clustering. The ability to generate such realizations of networks is important not only for creating artificial networks that can perform desired functions, but also to facilitate the study of networks as part of other algorithms. This problem exhibits large combinatorial complexity and is difficult to solve with off-the-shelf commercial optimization software. To that end, we also present a customized preprocessing algorithm that allows us to judiciously fix certain problem variables and, thus, significantly reduce computational times. Results from the application of the framework to data sets resulting from simulations of an acquaintance network formation model are presented.

Keywords

Networks Graph theory Mathematical optimization Clustering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albert R., Barabási A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)zbMATHCrossRefGoogle Scholar
  2. 2.
    Al-Khayyal F.A., Falk J.E.: Jointly constrained biconvex programming. Math. Oper. Res. 8, 273–286 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Axelrod R.: The Complexity of Cooperation. Princeton University Press, Princeton (1997)Google Scholar
  4. 4.
    Balcan D., Colizza V., Gonçalves, Hu H., Ramasco J.J., Vespignani A.: Multiscale mobility networks and the spatial spreading of infectious diseases. Proc. Natl. Acad. Sci. USA 106, 21484–21489 (2009)CrossRefGoogle Scholar
  5. 5.
    Bansal S., Khandelwal S., Meyers L.A.: Exploring biological network structure with clustered random networks. BMC Bioinforma. 10, 405 (2009)CrossRefGoogle Scholar
  6. 6.
    Barabási A.L., Albert R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Barrat A., Barthelemy M., Vespignani A.: Dynamical processes on complex networks. Cambridge University Press, New York (2008)zbMATHCrossRefGoogle Scholar
  8. 8.
    Blitzstein, J., Diaconis, P.: A sequential importance sampling algorithm for generating random graphs with prescribed degrees. Unpublished paper (2006). http://nrs.harvard.edu/urn-3:HUL.InstRepos:2757225
  9. 9.
    Boginski, V., Butenko, S., Pardalos, P.M.: Modeling and optimization in massive graphs. In: Pardalos, P.M., Wolkowitz, H. (eds.) Novel Approaches to Hard Discrete Optimization, vol. 37, pp. 17–39. American Mathematical Society, Fields Institute Communications, Providence (2003)Google Scholar
  10. 10.
    Boginski V., Commander C.W.: Identifying critical nodes in protein–protein interaction networks. In: Butenko, S., Chaovalitwongse, W.A., Pardalos, P.M. (eds) Clustering Challenges in Biological Networks, pp. 153–167. World Scientific, Singapore (2009)CrossRefGoogle Scholar
  11. 11.
    Boguñá M., Pastor-Satorras R.: Epidemic spreading in correlated complex networks. Phys. Rev. E 66, 047104 (2002)CrossRefGoogle Scholar
  12. 12.
    Bollobas B.: A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. Eur. J. Combin. 1, 311–316 (1980)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Butenko S., Chaovalitwongse W.A., Pardalos P.M.: Clustering Challenges in Biological Networks. World Scientific, Singapore (2009)CrossRefGoogle Scholar
  14. 14.
    Callaway D.S., Hopcroft J.E., Kleinberg J.M, Newman M.E.J., Strogatz S.H.: Are randomly grown graphs really random. Phys. Rev. E 64, 041902 (2001)CrossRefGoogle Scholar
  15. 15.
    Calvo-Armengol A., Jackson M.O.: The effects of social networks on employment and inequality. Am. Econ. Rev. 94, 426–454 (2004)CrossRefGoogle Scholar
  16. 16.
    Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: a recursive model for graph mining. In: Fourth SIAM International Conference on Data Mining (2004)Google Scholar
  17. 17.
    Chung F., Lu L.: Connected components in random graphs with given expected degree sequences. Ann. Comb. 6, 125–145 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    IBM Corp.: IBM ILOG CPLEX V11.0. User’s Manual for CPLEX (2009)Google Scholar
  19. 19.
    Davidsen J., Ebel H., Bornholdt S.: Emergence of a small world from local interactions: modeling acquaintance networks. Phys. Rev. Lett. 88, 128701 (2002)CrossRefGoogle Scholar
  20. 20.
    Dorogovtsev, S.N., Mendes, J.F.F., Samukhin, A.N.: How to construct a correlated net. Unpublished paper (2002) Available from: ArXiv Condensed Matter e-printsGoogle Scholar
  21. 21.
    Erdös P., Rényi A.: On random graphs, I. Publ. Math-Debrecen 6, 290–297 (1959)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Erdös P., Gallai T.: Graphs with prescribed degrees of vertices. Mat. Lapok 11, 264–274 (1960)Google Scholar
  23. 23.
    Faloutsos M., Faloutsos P., Faloutsos C.: On power-law relationships of the Internet topology. Comp. Comm. R. 29, 251–262 (1999)CrossRefGoogle Scholar
  24. 24.
    Floudas C.A.: Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications. Oxford University Press, New York (1995)zbMATHGoogle Scholar
  25. 25.
    Fu P., Liao K.: An evolving scale-free network with large clustering coefficient. Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Hakimi S.L.: On realizability of a set of integers as degrees of the vertices of a linear graph. I. J. Soc. Ind. Appl. Math. 10, 496–506 (1962)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Havel V.: A remark on the existence of finite graphs (in Czech). Casopis Pest. Mat. 80, 477–480 (1955)zbMATHMathSciNetGoogle Scholar
  28. 28.
    Jeong H., Tombor B., Albert R., Oltavi Z.N., Barabási A.L.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)CrossRefGoogle Scholar
  29. 29.
    Kevrekidis I.G., Gear C.W., Hummer G.: Equation-free: the computer-aided analysis of complex multiscale systems. AIChE J. 50, 1346–1355 (2004)CrossRefGoogle Scholar
  30. 30.
    Kevrekidis I.G., Gear C.W., Hyman J.M., Kevrekidis P.G., Runborg O., Theodoropoulos C.: Equation-free, coarse-grained multiscale computation: enabling microscopic simulators to perform system-level analysis. Commun. Math. Sci. 1, 715–762 (2003)zbMATHMathSciNetGoogle Scholar
  31. 31.
    Kim B.J.: Performance of networks of artificial neurons: the role of clustering. Phys. Rev. E 69, 045101 (2004)CrossRefGoogle Scholar
  32. 32.
    Kingsford, C., Zaslavsky, E., Singh, M.: A compact mathematical programming formulation for DNA motif finding. In: Proceedings of the Combinatorial Pattern Matching. Lecture Notes in Computer Science, vol. 4009, pp. 233–245 (2006)Google Scholar
  33. 33.
    McCormick G.P.: Computability of global solutions to factorable nonconvex programs. Part I. Convex underestimating problems. Math. Program. 10, 147–175 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Nemhauser G.L., Wolsey L.A.: Integer and Combinatorial Optimization. Wiley, New York (1998)Google Scholar
  35. 35.
    Newman M.E.J.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. USA 98, 404–409 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Newman M.E.J.: Properties of highly clustered networks. Phys. Rev. E 68, 026121 (2003)CrossRefGoogle Scholar
  37. 37.
    Newman M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Newman M.E.J., Watts D.J., Strogatz S.H.: Random graph models of social networks. Proc. Natl. Acad. Sci. USA 99, 2566–2572 (2002)zbMATHCrossRefGoogle Scholar
  39. 39.
    Nier E., Yang J., Yorulmazer T., Alentorn A.: Network models and financial stability. J. Econ. Dyn. Control 31, 2033–2060 (2007)zbMATHCrossRefGoogle Scholar
  40. 40.
    Qiang Q., Nagurney A.: A unified network performance measure with importance identification and the ranking of network components. Optim. Lett. 2, 127–142 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Ravasz E., Barabási A.L.: Hierarchical organization in complex networks. Phys. Rev. E 67, 026112 (2003)CrossRefGoogle Scholar
  42. 42.
    Qiang Q., Nagurney A., Rebennack S., Arulselvan A., Elefteriadou L., Pardalos P.M.: Complexity analysis for maximum flow problems with arc reversals. J. Comb. Optim. 19, 200–216 (2010)CrossRefMathSciNetGoogle Scholar
  43. 43.
    Serrano M.A., Boguñá M.: Tuning clustering in random networks with arbitrary degree distributions. Phys. Rev. E 72, 036133 (2005)CrossRefGoogle Scholar
  44. 44.
    Sierskma G., Hoogeveen H.: Seven criteria for integer sequences being graphic. J. Graph Theor. 15, 223–231 (1991)CrossRefGoogle Scholar
  45. 45.
    Strogatz S.H.: Exploring complex networks. Nature 410, 268–276 (2001)CrossRefGoogle Scholar
  46. 46.
    Valente T.W.: Social network thresholds in the diffusion of innovations. Soc. Netw. 18, 441–458 (1996)CrossRefGoogle Scholar
  47. 47.
    Vazquez A., Boguñá M., Moreno Y., Pastor-Satorras R., Vespignani A.: Topology and correlations in structured scale-free networks. Phys. Rev. E 67, 046111 (2003)CrossRefGoogle Scholar
  48. 48.
    Vazquez A., Pastor-Satorras R., Vespignani A.: Large-scale topological and dynamical properties of the Internet. Phys. Rev. E 65, 066130 (2002)CrossRefGoogle Scholar
  49. 49.
    Volz E.: Random networks with tunable degree distribution and clustering. Phys. Rev. E 70, 056115 (2004)CrossRefGoogle Scholar
  50. 50.
    Watts D.J., Dodds P.S.: Influentials, networks, and public opinion formation. J. Consum. Res. 34, 441–458 (2007)CrossRefGoogle Scholar
  51. 51.
    Watts D.J., Strogatz S.H.: Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  52. 52.
    Williams R.J., Martinez N.D.: Simple rules yield complex food webs. Nature 404, 180–183 (2000)CrossRefGoogle Scholar
  53. 53.
    Wormald N.C.: Some problems in the enumeration of labelled graphs. B. Aust. Math. Soc. 21, 159–160 (1980)zbMATHCrossRefGoogle Scholar
  54. 54.
    Xanthopoulos, P., Arulselvan, A., Boginski, V., Pardalos, P.M.: A retrospective review of social networks. In: Advances in Social Networks Analysis and Mining (ASONAM-2009), pp. 300–305. IEEE Computer Society, USA (2009)Google Scholar
  55. 55.
    Zaslavsky, E., Singh, M.: A combinatorial complex optimization approach for diverse motif finding applications. Algorithm. Mol. Biol. 1–13 (2006)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Chrysanthos E. Gounaris
    • 1
    Email author
  • Karthikeyan Rajendran
    • 1
  • Ioannis G. Kevrekidis
    • 1
    • 2
  • Christodoulos A. Floudas
    • 1
    • 2
  1. 1.Department of Chemical and Biological EngineeringPrinceton UniversityPrincetonUSA
  2. 2.Program in Applied and Computational MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations