Optimization Letters

, Volume 6, Issue 5, pp 915–926 | Cite as

Modelling transfer line design problem via a set partitioning problem

  • Pavel Borisovsky
  • Alexandre DolguiEmail author
  • Sergey Kovalev
Original Paper


The design of a transfer line is considered. This line is used for a repetitive execution of a given set of operations to produce identical items. The line is composed of a sequence of workstations equipped with processing modules (blocks). Each block performs specific operations. The machined items move along the workstations in the same direction. There is the same cost associated with each workstation and different costs associated with diverse blocks. The problem is to determine the number of workstations, select a set of blocks and assign the selected blocks to the workstations so that, for each item, each operation is performed exactly once with total line cost to be minimized. The specificity of the problem is that all operations of the same workstation are performed in parallel. There are inclusion, exclusion, and precedence relations that restrict the assignment of blocks and operations to the same workstation and constrain the processing order of the operations on the transfer line. We suggest a reduction of this transfer line design problem to a simple set partitioning problem. This reduction is based on the concept of a locally feasible workstation.


Transfer line design Line balancing Parallel operations Set partitioning problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atamturk A., Nemhauser G.L., Savelsbergh M.W.P.: A combined Lagrangian, linear programming, and implication heuristic for large-scale set partitioning problems. J. Heuristics 1, 247–259 (1995)CrossRefGoogle Scholar
  2. 2.
    Balas E., Padberg M.W.: Set partitioning: a survey. SIAM Rev. 18, 710–760 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Baldacci R., Christofides N., Mingozzi A.: An exact algorithm for the vehicle routing problem based on the set partitioning formulation with additional cuts. Math. Program. 115(2), 351–385 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Barnhart C., Johnson E.D., Nemhauser G.L., Savelsbergh M.W.P., Vance P.H.: Branch and Price: column Generation for solving huge integer programs. Oper. Res. 46, 316–329 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Baybars I.: A survey of exact algorithms for the simple line balancing problem. Manag. Sci. 32, 909–932 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Belmokhtar S., Dolgui A., Guschinsky N., Levin G.: Integer programming models for logical layout design of modular machining lines. Comput. Ind. Eng. 51, 502–518 (2006)CrossRefGoogle Scholar
  7. 7.
    Boschetti M.A., Mingozzi A., Ricciardelli S.: A dual ascent procedure for the set partitioning problem. Discr. Optim. 5(4), 735–747 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bukchin J., Rubinovitz J.: A weighted approach for assembly line design with station paralleling and equipment selection. IIE Trans. 35, 73–85 (2002)CrossRefGoogle Scholar
  9. 9.
    Bukchin J., Tzur M.: Design of flexible assembly line to minimize equipment cost. IIE Trans. 32, 585–598 (2000)Google Scholar
  10. 10.
    Chu P.C., Beasley J.E.: Constraint handling in genetic algorithms: the set partitioning problem. J. Heuristics 4, 323–357 (1998)zbMATHCrossRefGoogle Scholar
  11. 11.
    Cohn A., Magazine M., Polak G.: Rank-Cluster-and-Prune: an algorithm for generating clusters in complex set partitioning problems. Naval Res. Logist. 56(3), 215–225 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Dolgui A., Guschinsky N., Levin G.: A special case of transfer lines balancing by graph approach. Eur. J. Oper. Res. 168, 732–746 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Dolgui A., Guschinsky N., Levin G., Proth J.-M.: Optimisation of multi-position machines and transfer lines. Eur. J. Oper. Res. 185, 1375–1389 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Dolgui A., Guschinsky N., Levin G., Louly M., Belmokhtar S.: Balancing of transfer lines with simultaneously activated spindles. In: Kopacek, P., Pereira, C., Morel, G. (eds) Information Control Problems in Manufacturing 2004, pp. 45–50. Elsevier, Amsterdam (2005) (ISBN 0-08-044249-8)Google Scholar
  15. 15.
    Dolgui A., Ihnatsenka I.: Balancing modular transfer lines with serial-parallel activation of spindle heads at stations. Discr. Appl. Math. 157, 68–89 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Dolgui A., Ihnatsenka I.: Branch and bound algorithm for a transfer line design problem: Stations with sequentially activated multi-spindle heads. Eur. J.Oper. Res. 197, 1119–1132 (2009)zbMATHCrossRefGoogle Scholar
  17. 17.
    Elhallaoui I., Metrane A., Soumis F., Desaulniers G.: Multi-phase dynamic constraint aggregation for set partitioning type problems. Math. Program. 123(2), 345–370 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Erel E., Sarin S.C.: A survey of the assembly line balancing procedures. Prod. Planning Control 9, 414–434 (1998)CrossRefGoogle Scholar
  19. 19.
    Ghoniem A., Sherali H.D.: Complementary column generation and bounding approaches for set partitioning formulations. Optim. Lett. 3(1), 123–136 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Graves S.C., Holmes Redfield C.: Equipment selection and task assignment for multi-product assembly system design. Int. J. Flex. Manuf. Syst. 1, 31–50 (1988)CrossRefGoogle Scholar
  21. 21.
    Graves S.C., Lamar B.W.: An integer programming procedure for assembly design problems. Oper. Res. 31, 522–545 (1983)zbMATHCrossRefGoogle Scholar
  22. 22.
    Guschinskaya O., Dolgui A.: Comparison of exact and heuristic methods for a transfer line balancing problem. Int. J. Prod. Econ. 120, 276–286 (2009)CrossRefGoogle Scholar
  23. 23.
    Hoffman K.L, Padberg M.: Solving airline crew scheduling problems by branch-and-cut. Manag. Sci. 39, 657–682 (1993)zbMATHCrossRefGoogle Scholar
  24. 24.
    Kiseleva E.M., Kadochnikova Ya.E.: Solving a continuous single-product problem of optimal partitioning with additional conditions. J. Autom. Inform. Sci. 41(7), 48–63 (2009)CrossRefGoogle Scholar
  25. 25.
    Kiseleva E., Stepanchuk T.: On the efficiency of a global non-differentiable optimization algorithm based on the method of optimal set partitioning. J. Glob. Optim. 25(2), 209–235 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Lapierre S.D., Ruiz A., Soriano P.: Balancing assembly lines with tabu search. Eur. J. Oper. Res. 168, 826–837 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Linderoth J.T., Lee E.K., Savelsbergh M.W.P.: A parallel, LP-based heuristic for large-scale set partitioning problems. INFORMS J. Comput. 14, 191–209 (2001)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Lu Z., Glover F., Hao J.-K.: A hybrid metaheuristic approach to solving the UBQP problem. Eur. J. Oper. Res. 207(3), 1254–1262 (2010)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Ozcan U., Toklu B.: Multiple-criteria decision-making in two-sided assembly line balancing: A goal programming and a fuzzy goal programming models. Comput. Oper. Res. 36, 1955–1965 (2009)CrossRefGoogle Scholar
  30. 30.
    Rekiek B., Dolgui A., Delchambre A., Bratcu A.: State of art of assembly lines design optimisation. Annu. Rev. Control 26, 163–174 (2002)CrossRefGoogle Scholar
  31. 31.
    Scholl A.: Balancing and Sequencing of Assembly Lines. Physica-Verlag, Heidelberg (1999)Google Scholar
  32. 32.
    Vemuganti R.R.: Applications of set covering, set packing and set partitioning models: a survey. In: Du, D.-Z., Pardalos, P.M. (eds) Handbook of Combinatorial Optimization, vol. 1, pp. 573–746. Kluwer Academic Publishers, Dordrecht (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Pavel Borisovsky
    • 1
  • Alexandre Dolgui
    • 2
    Email author
  • Sergey Kovalev
    • 2
  1. 1.Institute of Mathematics and Information TechnologiesOmsk F.M. Dostoevsky State UniversityOmskRussia
  2. 2.Industrial Engineering and Computer Science Centre (G2I)Ecole des Mines de Saint-EtienneSaint-Etienne Cedex 2France

Personalised recommendations