Advertisement

Optimization Letters

, Volume 5, Issue 3, pp 407–419 | Cite as

Experiments with LAGRASP heuristic for set k-covering

  • Luciana S. Pessoa
  • Mauricio G. C. Resende
  • Celso C. Ribeiro
Original Paper

Abstract

The set k-covering problem (SC k P) is a variant of the classical set covering problem, in which each object is required to be covered at least k times. We describe a hybrid Lagrangean heuristic, named LAGRASP, which combines subgradient optimization and GRASP with path-relinking to solve the SC k P. Computational experiments carried out on 135 test instances show experimentally that by properly tuning the parameters of LAGRASP, it is possible to obtain a good trade-off between solution quality and running times. Furthermore, LAGRASP makes better use of the dual information provided by subgradient optimization and is able to discover better solutions and to escape from locally optimal solutions even after the stabilization of the lower bounds, whereas other strategies fail to find new improving solutions.

Keywords

GRASP Hybrid heuristics Metaheuristics Path-relinking Lagrangean relaxation Lagrangean heuristics Local search Set covering Set multicovering Set k-covering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vazirani V.: Approximation Algorithms. Springer, Berlin (2004)Google Scholar
  2. 2.
    Bafna, V., Halldorsson, B. V., Schwartz, R., Clark, A.G., Istrail, S.: Haplotypes and informative snp selection algorithms: don’t block out information. In: RECOMB ’03: Proceedings of the seventh annual international conference on Research in Computational Molecular Biology, ACM pp. 19–27 (2003)Google Scholar
  3. 3.
    Resende M.G.C.: An optimizer in the telecommunications industry. SIAM SIAG/Optim. Views News 18(2), 8–19 (2007)Google Scholar
  4. 4.
    Hall N.G., Hochbaum D.S.: The multicovering problem. Eur. J. Oper. Res. 62(3), 323–339 (1992)zbMATHCrossRefGoogle Scholar
  5. 5.
    Resende, M.G.C., Toso, R.T., Gonçalves, J.F., Silva, R.M.A.: A biased random-key genetic algorithm for the Steiner triple covering problem. Optim. Lett. (2011). doi: 10.1007/s11590-011-0285-3
  6. 6.
    Breslau, L., Diakonikolas, I., Duffield, N., Gu, Y., Taghi, H.M., Johnson, D., Karloff, H., Resende, M.G.C., Sen, S.: Disjoint-path facility location: theory and practice. In: Proceedings of the Thirteenth Workshop on Algorithm Engineering and Experiments (ALENEX), pp. 60–74 (2011)Google Scholar
  7. 7.
    Gonçalves, L., Martins, S.L., Ochi, L., Subramanian, A.: Exact and heuristic approaches for the set cover with pairs problem. Optim. Lett. (2011). doi: 10.1007/s11590-011-0289-z
  8. 8.
    Lucena, A.: Private communication (2009)Google Scholar
  9. 9.
    Avella P., Boccia M., Vasilyev I.: Computational experience with general cutting planes for the Set Covering problem. Oper. Res. Lett. 37, 16–20 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Balas E., Ng S.: On the set covering polytope: I All the facets with coefficients in 0,1,2. Math. Program. Series A 43, 57–69 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Balas E., Ng S.: On the set covering polytope: II. Lifting the facets with coefficients in 0,1,2. Math. Program. Series A 45, 1–20 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Pessoa, L.S., Ribeiro, C.C.: A GRASP for the minimum informative subset problem. In: CIRRELT (ed.) Proceedings of the Seventh Metaheuristics International Conference (MIC2007), pp. 44–44 (2007)Google Scholar
  13. 13.
    Pessoa, L.S., Resende, M.G.C., Ribeiro, C.C.: A hybrid Lagrangean heuristic with GRASP and path-relinking for set k-covering. Technical report, AT&T Labs Research (2010)Google Scholar
  14. 14.
    Feo T., Resende M.G.C.: Greedy randomized adaptative search procedures. J. Global Optim. 6(2), 109–133 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Resende M.G.C., Ribeiro C.C.: Greedy randomized adaptive search procedures: advances and applications. In: Gendreau, M., Potvin, J. (eds) Handbook of Metaheuristics, pp. 293–319. Springer Science/Business Media, Boston (2010)Google Scholar
  16. 16.
    Beasley, J.E.: Lagrangean relaxation. In: Reeves, C.R. (ed.) Modern Heuristic Techniques for Combinatorial Problems., pp. 243–303. Blackwell Scientific Publications, Oxford (1993)Google Scholar
  17. 17.
    Fisher M.: The Lagrangian relaxation method for solving integer programming problems. Manag. Sci. 50, 1861–1871 (2004)CrossRefGoogle Scholar
  18. 18.
    Held M., Karp R.M.: The traveling-salesman problem and minimum spanning trees. Oper. Res. 18, 1138–1162 (1970)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Held M., Karp R.M.: The traveling-salesman problem and minimum spanning trees: Part II. Math. Program. 1, 6–25 (1971)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Beasley J.E.: An algorithm for set-covering problem. Eur. J. Oper. Res. 31, 85–93 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Beasley J.E.: A Lagrangian heuristic for set-covering problems. Naval Res. Logist. 37, 151–164 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Held M., Wolfe P., Crowder H.: Validation of subgradient optimization. Math. Program. 6, 62–88 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Beasley J.E.: OR-Library: distributing test problems by electronic mail. J. of the Oper. Res. Soc. 41, 1069–1072 (1990)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Luciana S. Pessoa
    • 1
  • Mauricio G. C. Resende
    • 2
  • Celso C. Ribeiro
    • 3
  1. 1.Department of Informatics and Applied MathematicsUniversidade Federal do Rio Grande do NorteNatalBrazil
  2. 2.Algorithms and Optimization Research DepartmentAT&T Labs ResearchFlorham ParkUSA
  3. 3.Department of Computer ScienceUniversidade Federal FluminenseNiteróiBrazil

Personalised recommendations