Optimization Letters

, Volume 6, Issue 5, pp 883–891 | Cite as

Parameterized computational complexity of finding small-diameter subgraphs

  • Alexander Schäfer
  • Christian Komusiewicz
  • Hannes Moser
  • Rolf Niedermeier
Original Paper


Finding subgraphs of small diameter in undirected graphs has been seemingly unexplored from a parameterized complexity perspective. We perform the first parameterized complexity study on the corresponding NP-hard s-Club problem. We consider two parameters: the solution size and its dual.


Clique relaxation s-Club NP-hard problem Problem kernel Polynomial-time preprocessing Branching algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alba R.D.: A graph-theoretic definition of a sociometric clique. J. Math. Sociol. 3, 3–113 (1973)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Asahiro, Y., Miyano, E., Samizo K.: Approximating maximum diameter-bounded subgraphs. In: Proceedings of the 9th Latin American Theoretical Informatics Symposium (LATIN’10). Lecture Notes in Computer Science, vol. 6034, pp. 615–626. Springer, Berlin (2010)Google Scholar
  3. 3.
    Balasundaram B., Butenko S., Trukhanov S.: Novel approaches for analyzing biological networks. J. Comb. Optim. 10(1), 23–39 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bodlaender, H.L.: Kernelization: New upper and lower bound techniques. In: Proceedings of the 4th International Workshop on Parameterized and Exact Computation (IWPEC’09). Lecture Notes in Computer Science, vol. 5917, pp. 17–37. Springer, Berlin (2009)Google Scholar
  5. 5.
    Bodlaender H.L., Downey R.G., Fellows M.R., Hermelin D.: On problems without polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bourjolly J., Laporte G., Pesant G.: Heuristics for finding k-clubs in an undirected graph. Comput. Oper. Res. 27(6), 559–569 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bourjolly J., Laporte G., Pesant G.: An exact algorithm for the maximum k-club problem in an undirected graph. Eur. J. Oper. Res. 138(1), 21–28 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Butenko, S., Prokopyev, O.: On k-club and k-clique numbers in graphs. Technical report, Texas A and M University (2007)Google Scholar
  9. 9.
    Downey R.G., Fellows M.R.: Fixed-parameter tractability and completeness II: on completeness for W[1]. Theor. Comput. Sci. 141(1&2), 109–131 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Downey R.G., Fellows M.R.: Parameterized Complexity. Springer, Berlin (1999)CrossRefGoogle Scholar
  11. 11.
    Fernau, H., Fomin, F.V., Lokshtanov, D., Raible, D., Saurabh, S., Villanger Y.: Kernel(s) for problems with no kernel: on out-trees with many leaves. In: Proceedings of the 26th International Symposium on Theoretical Aspects of Computer Science (STACS’09). LIPIcs, vol. 3, pp. 421–432. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany (2009)Google Scholar
  12. 12.
    Flum J., Grohe M.: Parameterized Complexity Theory. Springer, Berlin (2006)Google Scholar
  13. 13.
    Fortnow L., Santhanam R.: Infeasibility of instance compression and succinct pcps for np. J. Comput. Syst. Sci. 77(1), 91–106 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Guo J., Niedermeier R.: Invitation to data reduction and problem kernelization. ACM SIGACT News 38(1), 31–45 (2007)CrossRefGoogle Scholar
  15. 15.
    Lokshtanov, D.: New Methods in Parameterized Algorithms and Complexity. PhD thesis, Universitetet i Bergen, Bergen, Norway (2009)Google Scholar
  16. 16.
    Marincek J., Mohar B.: On approximating the maximum diameter ratio of graphs. Discret. Math. 244(1–3), 323–330 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Memon, N., Kristoffersen, K.C., Hicks, D.L., Larsen H.L.: Detecting critical regions in covert networks: a case study of 9/11 terrorists network. In: Proceedings of the 2nd International Conference on Availability, Reliability and Security (ARES’07), pp. 861–870. IEEE Computer Society, Washington, DC (2007)Google Scholar
  18. 18.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. In: Oxford Lecture Series in Mathematics and Its Applications, vol. 31. Oxford University Press, USA (2006)Google Scholar
  19. 19.
    Pasupuleti, S.: Detection of protein complexes in protein interaction networks using n-clubs. In: Proceedings of the 6th European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics (EvoBIO’08), volume 4973 of LNCS, pages 153–164. Springer, Berlin (2008)Google Scholar
  20. 20.
    Schäfer, A.: Exact algorithms for s-club finding and related problems, 2009. Diploma Thesis, Friedrich-Schiller-Universität JenaGoogle Scholar
  21. 21.
    Seidman S.B., Foster B.L.: A graph-theoretic generalization of the clique concept. J. Math. Sociol. 6, 139–154 (1978)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Alexander Schäfer
    • 1
  • Christian Komusiewicz
    • 2
  • Hannes Moser
    • 3
  • Rolf Niedermeier
    • 2
  1. 1.Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
  2. 2.Institut für Softwaretechnik und Theoretische InformatikTechnische Universtität BerlinBerlinGermany
  3. 3.Institut für InformatikFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations