Optimization Letters

, Volume 6, Issue 3, pp 459–470 | Cite as

Minimization of vectors of curvilinear functionals on the second order jet bundle

Necessary conditions
Original Paper


Consider the multi-time multi-objective variational problem (MFP) of minimizing a vector of quotients of path independent curvilinear functionals subject to PDE and/or PDI constraints. The goal of our work is to develop an optimization theory for the second order jet bundle. While the background in Sect. 1 is introductory, the theory in Sects. 2 and 3 is new as a whole, containing our results.


Lagrange 1-form density Multi-objective variational problem Efficiency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chinchuluun, A., Pardalos, P. M., Migdalas, A., Pitsoulis, L. (eds.): Pareto Optimality, Game Theory and Equilibria, Springer Optimization and Its Applications, vol. 17, Springer, Berlin (2008)Google Scholar
  2. 2.
    Chinchuluun A., Pardalos P.M.: A survey of recent developments in multiobjective optimization. Ann. Oper. Res. 154(1), 29–50 (2007)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Ferarra M., Mititelu Şt.: Mond-Weir duality in vector programming with generalized invex functions on differentiable manifolds. Balkan J. Geom. Appl. 11(1), 80–87 (2006)MathSciNetGoogle Scholar
  4. 4.
    Jagannathan R.: Duality for nonlinear fractional programming. Z. Oper. Res. 17, 1–3 (1973)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Kanniappan P.: Necessary conditions for optimality of nondifferentiable convex multiobjective programming. JOTA 40(2), 167–174 (1983)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Liang Z.A., Huang H.X., Pardalos P.M.: Optimality conditions and duality for a class of nonlinear fractional programming problems. J. Optim. Theory Appl. 110(3), 611–619 (2001)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Mititelu Şt.: Extensions in invexity theory. J. Adv. Math. Stud. 1(1–2), 63–70 (2008)MathSciNetMATHGoogle Scholar
  8. 8.
    Mititelu Şt.: Optimality and duality for invex multi-time control problems with mixed constraints. J. Adv. Math. Stud. 2(1), 25–34 (2009)MathSciNetMATHGoogle Scholar
  9. 9.
    Mititelu Şt., Stancu-Minasian I.M.: Invexity at a point: generalization and clasifications. Bull. Austral. Math. Soc. 48, 117–126 (1993)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Mititelu Şt., Postolache M.: Mond-Weir dualities with Lagrangians for multiobjective fractional and non-fractional variational problems. J. Adv. Math. Stud. 3(1), 41–58 (2010)MathSciNetMATHGoogle Scholar
  11. 11.
    Mond B., Husain I.: Sufficient optimality criteria and duality for variational problems with generalised invexity. J. Austral. Math. Soc. Ser. B 31, 106–121 (1989)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Pitea, A.: Integral Geometry and PDE Constrained Optimization Problems, PhD thesis, “Politehnica” University of Bucharest (2008)Google Scholar
  13. 13.
    Pitea A., Udrişte C., Mititelu Şt.: PDI & PDE-constrained optimization problems with curvilinear functional quotients as objective vectors. Balkan J. Geom. Appl. 14(2), 65–78 (2009)MATHGoogle Scholar
  14. 14.
    Pitea A., Udrişte C., Mititelu Şt.: New type dualities in PDI and PDE constrained optimization problems. J. Adv. Math. Stud. 2(1), 81–90 (2009)MathSciNetMATHGoogle Scholar
  15. 15.
    Pitea A.: On efficiency conditions for new constrained minimum problems. Sci. Bull. UPB, Ser. A Appl. Math. Phys. 71(3), 61–68 (2009)MathSciNetGoogle Scholar
  16. 16.
    Pitea A.: Null Lagrangian forms on 2nd order jet bundles. J. Adv. Math. Stud. 3(1), 73–82 (2010)MathSciNetMATHGoogle Scholar
  17. 17.
    Preda V.: On Mond-Weir duality for variational problems. Rev. Roumaine Math. Appl. 28(2), 155–164 (1993)MathSciNetGoogle Scholar
  18. 18.
    Preda V., Gramatovici S.: Some sufficient optimality conditions for a class of multiobjective variational problems. An. Univ. Bucureşti, Mat. Inf. 61(1), 33–43 (2002)MathSciNetGoogle Scholar
  19. 19.
    Udrişte C.: Simplified multitime maximum principle. Balkan J. Geom. Appl. 14(1), 102–119 (2009)MathSciNetMATHGoogle Scholar
  20. 20.
    Udrişte C., Postolache M.: Atlas of Magnetic Geometric Dynamics. Geometry Balkan Press, Bucharest (2001)MATHGoogle Scholar
  21. 21.
    Udrişte C., Ţevy I.: Multi-time Euler–Lagrange–Hamilton theory. WSEAS Trans. Math. 6(6), 701–709 (2007)MathSciNetMATHGoogle Scholar
  22. 22.
    Udrişte, C., Ţevy, I.: Multi-time Euler–Lagrange dynamics, In: Proceedings of the Fifth WSEAS International Conference Systems Theory and Scientific Computation, pp. 66–71. Athens, Greece, August 24–26 (2007)Google Scholar
  23. 23.
    Udrişte C., Dogaru O., Ţevy I.: Null Lagrangian forms and Euler–Lagrange PDEs. J. Adv. Math. Stud. 1(1-2), 143–156 (2008)MathSciNetMATHGoogle Scholar
  24. 24.
    Udrişte C., Popescu P., Popescu M.: Generalized multi-time Lagrangians and Hamiltonians. WSEAS Trans. Math. 7, 66–72 (2008)MathSciNetGoogle Scholar
  25. 25.
    Valentine, F.A.: The problem of Lagrange with differentiable inequality as added side conditions, In: “Contributions to the Calculus of Variations, 1933–1937”, pp. 407–448. University of Chicago Press, Chicago (1937)Google Scholar
  26. 26.
    Weir T., Mond B.: Generalized convexity and duality in multiobjective programming. Bull. Austral. Math. Soc. 39, 287–299 (1989)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.University “Politehnica” of Bucharest Faculty of Applied SciencesBucharestRomania

Personalised recommendations