Optimization Letters

, Volume 6, Issue 3, pp 459–470 | Cite as

Minimization of vectors of curvilinear functionals on the second order jet bundle

Necessary conditions
Original Paper

Abstract

Consider the multi-time multi-objective variational problem (MFP) of minimizing a vector of quotients of path independent curvilinear functionals subject to PDE and/or PDI constraints. The goal of our work is to develop an optimization theory for the second order jet bundle. While the background in Sect. 1 is introductory, the theory in Sects. 2 and 3 is new as a whole, containing our results.

Keywords

Lagrange 1-form density Multi-objective variational problem Efficiency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chinchuluun, A., Pardalos, P. M., Migdalas, A., Pitsoulis, L. (eds.): Pareto Optimality, Game Theory and Equilibria, Springer Optimization and Its Applications, vol. 17, Springer, Berlin (2008)Google Scholar
  2. 2.
    Chinchuluun A., Pardalos P.M.: A survey of recent developments in multiobjective optimization. Ann. Oper. Res. 154(1), 29–50 (2007)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Ferarra M., Mititelu Şt.: Mond-Weir duality in vector programming with generalized invex functions on differentiable manifolds. Balkan J. Geom. Appl. 11(1), 80–87 (2006)MathSciNetGoogle Scholar
  4. 4.
    Jagannathan R.: Duality for nonlinear fractional programming. Z. Oper. Res. 17, 1–3 (1973)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Kanniappan P.: Necessary conditions for optimality of nondifferentiable convex multiobjective programming. JOTA 40(2), 167–174 (1983)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Liang Z.A., Huang H.X., Pardalos P.M.: Optimality conditions and duality for a class of nonlinear fractional programming problems. J. Optim. Theory Appl. 110(3), 611–619 (2001)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Mititelu Şt.: Extensions in invexity theory. J. Adv. Math. Stud. 1(1–2), 63–70 (2008)MathSciNetMATHGoogle Scholar
  8. 8.
    Mititelu Şt.: Optimality and duality for invex multi-time control problems with mixed constraints. J. Adv. Math. Stud. 2(1), 25–34 (2009)MathSciNetMATHGoogle Scholar
  9. 9.
    Mititelu Şt., Stancu-Minasian I.M.: Invexity at a point: generalization and clasifications. Bull. Austral. Math. Soc. 48, 117–126 (1993)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Mititelu Şt., Postolache M.: Mond-Weir dualities with Lagrangians for multiobjective fractional and non-fractional variational problems. J. Adv. Math. Stud. 3(1), 41–58 (2010)MathSciNetMATHGoogle Scholar
  11. 11.
    Mond B., Husain I.: Sufficient optimality criteria and duality for variational problems with generalised invexity. J. Austral. Math. Soc. Ser. B 31, 106–121 (1989)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Pitea, A.: Integral Geometry and PDE Constrained Optimization Problems, PhD thesis, “Politehnica” University of Bucharest (2008)Google Scholar
  13. 13.
    Pitea A., Udrişte C., Mititelu Şt.: PDI & PDE-constrained optimization problems with curvilinear functional quotients as objective vectors. Balkan J. Geom. Appl. 14(2), 65–78 (2009)MATHGoogle Scholar
  14. 14.
    Pitea A., Udrişte C., Mititelu Şt.: New type dualities in PDI and PDE constrained optimization problems. J. Adv. Math. Stud. 2(1), 81–90 (2009)MathSciNetMATHGoogle Scholar
  15. 15.
    Pitea A.: On efficiency conditions for new constrained minimum problems. Sci. Bull. UPB, Ser. A Appl. Math. Phys. 71(3), 61–68 (2009)MathSciNetGoogle Scholar
  16. 16.
    Pitea A.: Null Lagrangian forms on 2nd order jet bundles. J. Adv. Math. Stud. 3(1), 73–82 (2010)MathSciNetMATHGoogle Scholar
  17. 17.
    Preda V.: On Mond-Weir duality for variational problems. Rev. Roumaine Math. Appl. 28(2), 155–164 (1993)MathSciNetGoogle Scholar
  18. 18.
    Preda V., Gramatovici S.: Some sufficient optimality conditions for a class of multiobjective variational problems. An. Univ. Bucureşti, Mat. Inf. 61(1), 33–43 (2002)MathSciNetGoogle Scholar
  19. 19.
    Udrişte C.: Simplified multitime maximum principle. Balkan J. Geom. Appl. 14(1), 102–119 (2009)MathSciNetMATHGoogle Scholar
  20. 20.
    Udrişte C., Postolache M.: Atlas of Magnetic Geometric Dynamics. Geometry Balkan Press, Bucharest (2001)MATHGoogle Scholar
  21. 21.
    Udrişte C., Ţevy I.: Multi-time Euler–Lagrange–Hamilton theory. WSEAS Trans. Math. 6(6), 701–709 (2007)MathSciNetMATHGoogle Scholar
  22. 22.
    Udrişte, C., Ţevy, I.: Multi-time Euler–Lagrange dynamics, In: Proceedings of the Fifth WSEAS International Conference Systems Theory and Scientific Computation, pp. 66–71. Athens, Greece, August 24–26 (2007)Google Scholar
  23. 23.
    Udrişte C., Dogaru O., Ţevy I.: Null Lagrangian forms and Euler–Lagrange PDEs. J. Adv. Math. Stud. 1(1-2), 143–156 (2008)MathSciNetMATHGoogle Scholar
  24. 24.
    Udrişte C., Popescu P., Popescu M.: Generalized multi-time Lagrangians and Hamiltonians. WSEAS Trans. Math. 7, 66–72 (2008)MathSciNetGoogle Scholar
  25. 25.
    Valentine, F.A.: The problem of Lagrange with differentiable inequality as added side conditions, In: “Contributions to the Calculus of Variations, 1933–1937”, pp. 407–448. University of Chicago Press, Chicago (1937)Google Scholar
  26. 26.
    Weir T., Mond B.: Generalized convexity and duality in multiobjective programming. Bull. Austral. Math. Soc. 39, 287–299 (1989)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.University “Politehnica” of Bucharest Faculty of Applied SciencesBucharestRomania

Personalised recommendations