Optimization Letters

, Volume 6, Issue 3, pp 415–420 | Cite as

On the maximum TSP with γ-parameterized triangle inequality

Original Paper
  • 73 Downloads

Abstract

The maximum TSP with γ-parameterized triangle inequality is defined as follows. Given a complete graph G = (V, E, w) in which the edge weights satisfy w(uv) ≤ γ · (w(ux) + w(xv)) for all distinct nodes \({u,x,v \in V}\), find a tour with maximum weight that visits each node exactly once. Recently, Zhang et al. (Theor Comput Sci 411(26–28):2537–2541, 2010) proposed a \({\frac{\gamma+1}{3\gamma}}\)-approximation algorithm for \({\gamma\in\left[\frac{1}{2},1\right)}\). In this paper, we show that the approximation ratio of Kostochka and Serdyukov’s algorithm (Upravlyaemye Sistemy 26:55–59, 1985) is \({\frac{4\gamma+1}{6\gamma}}\), and the expected approximation ratio of Hassin and Rubinstein’s randomized algorithm (Inf Process Lett 81(5):247–251, 2002) is \({\frac{3\gamma+\frac{1}{2}}{4\gamma}-O\left(\frac{1}{\sqrt{n}}\right)}\), for \({\gamma\in\left[\frac{1}{2},+\infty\right)}\). These improve the result in Zhang et al. (Theor Comput Sci 411(26–28):2537–2541, 2010) and generalize the results in Hassin and Rubinstein and Kostochka and Serdyukov (Inf Process Lett 81(5):247–251, 2002; Upravlyaemye Sistemy 26:55–59, 1985).

Keywords

Maximum traveling salesman problem Parameterized triangle inequality Approximation algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen Z.-Z., Nagoya T.: Improved approximation algorithms for metric max TSP. J. Comb. Optim. 13(4), 321–336 (2007)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Chen Z.-Z., Okamoto Y., Wang L.: Improved deterministic approximation algorithms for Max TSP. Inf. Process. Lett. 95(2), 333–342 (2005)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Fisher M.L., Nemhauser G.L., Wolsey L.A.: An analysis of approximation for finding a maximum weight Hamiltonian circuit. Oper. Res. 27(4), 799–809 (1979)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Floudas, C.A., Pardalos, P.M.: Encyclopedia of optimization, 2nd edn. Springer (2009)Google Scholar
  5. 5.
    Hartvigsen, D.: Extensions of matching theory. Ph.D. Thesis, Carnegie-Mellon University, Pittsburgh, PA (1984)Google Scholar
  6. 6.
    Hassin R., Rubinstein S.: A 7/8-approximation algorithm for metric Max TSP. Inf. Process. Lett. 81(5), 247–251 (2002)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Hassin R., Rubinstein S.: Better approximations for max TSP. Inf. Process. Lett 75(4), 181–186 (2000)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Kostochka A.V., Serdyukov A.I.: Polynomial algorithms with the estimates 3/4 and 5/6 for the traveling salesman problem of the maximum (in Russian). Upravlyaemye Sistemy 26, 55–59 (1985)MathSciNetGoogle Scholar
  9. 9.
    Kowalik, L., Mucha, M.: 35/44-Approximation for asymmetric maximum TSP with triangle inequality. Algorithmica. doi:10.1007/s00453-009-9306-3
  10. 10.
    Kowalik L., Mucha M.: Deterministic 7/8-approximation for the metric maximum TSP. Theor. Comput. Sci. 410(47–49), 5000–5009 (2009)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Paluch K., Mucha M., Madry A.: A 7/9 approximation algorithm for the maximum traveling salesman problem. Lect. Notes Comput. Sci. 5687, 298–311 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Pardalos, P.M., Du, D.: Handbook of Combinatorial Optimization. Kluwer Academic Publishers. Volumes 1, 2, and 3 (1998), Supplement Volume A (1999), Supplement Volume B (2001)Google Scholar
  13. 13.
    Serdyukov A.I.: The traveling salesman problem of the maximum (in Russian). Upravlyaemye Sistemy 25, 80–86 (1984)MathSciNetMATHGoogle Scholar
  14. 14.
    Zhang T., Yin Y., Li J.: An improved approximation algorithm for the maximum TSP. Theor. Comput. Sci. 411(26–28), 2537–2541 (2010)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Atmospheric ScienceYunnan UniversityKunmingPeople’s Republic of China
  2. 2.Department of Architectural EngineeringChongQing Technology and Business InstituteChongqingPeople’s Republic of China

Personalised recommendations