Optimization Letters

, Volume 6, Issue 1, pp 87–98 | Cite as

Single-machine scheduling with nonlinear deterioration

Original Paper


In this paper, we consider the single-machine scheduling problems with nonlinear deterioration. By the nonlinear deterioration effect, we mean that the processing times of jobs are nonlinear functions of their starting times. We show that even with the introduction of nonlinear deterioration to job processing times, single machine makespan minimization problem remains polynomially solvable. We also show that an optimal schedule of the total completion time minimization problem is V-shaped with respect to job normal processing times. A heuristic algorithm utilizing the V-shaped property is proposed, and computational experiments show that it performs effectively and efficiently in obtaining near-optimal solutions.


Scheduling Single machine Deteriorating jobs Makespan Total completion time 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alidaee B.: A heuristic solution procedure to minimize makespan on a single machine with non-linear cost functions. J. Oper. Res. Soc. 41, 1065–1068 (1990)MATHGoogle Scholar
  2. 2.
    Alidaee B., Womer N.K.: Scheduling with time dependent processing processing times: review and extensions. J. Oper. Res. Soc. 50, 711–720 (1999)MATHGoogle Scholar
  3. 3.
    Cheng T.C.E., Ding Q., Lin B.M.T.: A concise survey of scheduling with time-dependent processing times. Eur. J. Oper. Res. 152, 1–13 (2004)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Cheng T.C.E., Ding Q., Kovalyov M.Y., Bachman A., Janiak A.: Scheduling jobs with piecewise linear decreasing processing times. Naval Res. Logist. 50(6), 531–554 (2003)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Cheng T.C.E., Wu C.C., Lee W.C.: Some scheduling problems with deteriorating jobs and learning effects. Comput. Ind. Eng. 54, 972–982 (2008)CrossRefGoogle Scholar
  6. 6.
    Gawiejnowicz S.: Time-dependent scheduling. Springer, Berlin (2008)MATHGoogle Scholar
  7. 7.
    Gawiejnowicz S.: Scheduling deteriorating jobs subject to job or machine availability constraints. Eur. J. Oper. Res. 180, 472–478 (2007)CrossRefMATHGoogle Scholar
  8. 8.
    Gawiejnowicz S., Kurc W., Pankowska L.: Pareto and scalar bicriterion optimization in scheduling deteriorating jobs. Comput. Oper. Res. 33, 746–767 (2006)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Graham R.L., Lawler E.L., Lenstra J.K., Rinnooy Kan A.H.G.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. Discrete Math. 5, 287–326 (1979)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Gupta J.N.D., Gupta S.K.: Single facility scheduling with nonlinear processing times. Comput. Ind. Eng. 14, 387–393 (1998)CrossRefGoogle Scholar
  11. 11.
    Hadda H.: A \({\left(\frac{4}{3}\right)}\)-approximation algorithm for a special case of the two machine flow shop problem with several availability constraints. Optim. Lett. 3, 583–592 (2009)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Lee W.-C., Wu C.-C., Chung Y.-H., Liu H.-C.: Minimizing the total completion time in permutation flow shop with machine-dependent job deterioration rates. Comput. Oper. Res. 36, 2111–2121 (2009)CrossRefMATHGoogle Scholar
  13. 13.
    Lee W.-C., Wu C.-C., Wen C.-C., Chung Y.-H.: A two-machine flowshop makespan scheduling problem with deteriorating jobs. Comput. Ind. Eng. 54, 737–749 (2008)CrossRefGoogle Scholar
  14. 14.
    Lee C.-Y., Yu G.: Parallel-machine scheduling under potential disruption. Optim. Lett. 2, 27–37 (2008)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Leung J.Y.T., Ng C.T., Cheng T.C.E.: Minimizing sum of completion times for batch scheduling of jobs with deteriorating processing times. Eur. J. Oper. Res. 187, 1090–1099 (2008)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Kanet J.J.: Minimizing variation of flow time in single machine systems. Manage. Sci. 27(12), 1453–1459 (1981)CrossRefMATHGoogle Scholar
  17. 17.
    Kononov A., Gawiejnowicz S.: NP-hard cases in scheduling deteriorating jobs on dedicated machines. J. Oper. Res. Soc. 52, 708–717 (2001)CrossRefMATHGoogle Scholar
  18. 18.
    Kuo W.-H., Yang D.-L.: Single-machine scheduling problems with start-time dependent processing time. Comput. Math. Appl. 53, 1658–1664 (2007)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Oron D.: Single machine scheduling with simple linear deterioration to miminize total absolute deviation of completion times. Comput. Oper. Res. 5, 2071–2078 (2008)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Pardalos P.M., Resende M.G.C.: Handbook of Applied Optimization. Oxford University Press, Oxford (2002)MATHGoogle Scholar
  21. 21.
    Setamaa-Karkkainen A., Miettinen K., Vuori J.: Heuristic for a new multiobjective scheduling problem. Optim. Lett. 1, 213–225 (2007)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Tang L., Liu P.: Two-machine flowshop scheduling problems involving a batching machine with transportation or deterioration consideration. Appl. Math. Model. 33, 1187–1199 (2009)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Voutsinas T.G., Pappis C.P.: Scheduling jobs with values exponentially deteriorating over time. Int. J. Prod. Econ. 79, 163–169 (2002)CrossRefGoogle Scholar
  24. 24.
    Wang J.-B., Ng C.T., Cheng T.C.E., Liu L.L.: Minimizing total completion time in a two-machine flow shop with deteriorating jobs. Appl. Math. Comput. 180, 185–193 (2006)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Wang J.-B., Xia Z.-Q.: Flow shop scheduling with deteriorating jobs under dominating machines. Omega 34, 327–336 (2006)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Wu C.-C., Lee W.-C.: Single-machine group-scheduling problems with deteriorating setup times and job-processing times. Int. J. Prod. Econ. 115, 128–133 (2008)CrossRefGoogle Scholar
  27. 27.
    Wu C.-C., Lee W.-C., Shiau Y.-R.: Minimizing the total weighted completion time on a single machine under linear deterioration. Int. J. Adv. Manuf. Technol. 33, 1237–1243 (2007)CrossRefGoogle Scholar
  28. 28.
    Wu C.-C., Shiau Y.-R., Lee W.-C.: Single-machine group scheduling problems with deterioration consideration. Comput. Oper. Res. 35, 1652–1659 (2008)CrossRefMATHGoogle Scholar
  29. 29.
    Zhao, C.-L., Tang, H.-Y.: A note on two-machine no-wait flow shop scheduling with deteriorating jobs and machine availability constraints. Optim. Lett. (2010). doi: 10.1007/s11590-010-0202-1
  30. 30.
    Zhao C.-L., Zhang Q.-L., Tang H.-Y.: Scheduling problems under linear deterioration. Acta Autom. Sin. 29, 531–535 (2003)MathSciNetGoogle Scholar
  31. 31.
    Zhu V.C.Y., Sun L., Sun L., Li X.: Single machine scheduling time-dependent jobs with resource-dependent ready times. Comput. Ind. Eng. 58, 84–87 (2010)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.School of ScienceShenyang Aerospace UniversityShenyangChina
  2. 2.School of Management Science and EngineeringDalian University of TechnologyDalianChina

Personalised recommendations