Optimization Letters

, Volume 5, Issue 4, pp 705–716 | Cite as

A feasible point adaptation of the Blankenship and Falk algorithm for semi-infinite programming

  • Angelos Tsoukalas
  • Berç Rustem
Original Paper


Discretization methods for semi-infinite programming do not provide a feasible point in a finite number of iterations. We propose a method that computes a feasible point with an objective value better than or equal to a target value f 0 or proves that such a point does not exist. Then a binary search on the space of objective values can be performed to obtain a feasible, \({\epsilon}\)-optimal solution. The algorithm is based on the algorithm proposed in (Blankenship JW, Falk JE in J Optim Theory Appl 19(2):261–281, 1976). Under mild assumptions it terminates in a finite number of iterations.


Semi-infinite programming Feasible point method Global optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blankenship J.W., Falk J.E.: Infinitely constrained optimization problems. J. Optim. Theory Appl. 19(2), 261–281 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Hettich R., Kortanek K.O.: Semi-infinite programming: theory, methods, and applications. SIAM Rev. 35(3), 380–429 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bhattacharjee B., Lemonidis P., Green W.H. Jr, Barton P.I.: Global solution of semi-infinite programs. Math. Program. 103(2, Ser. B), 283–307 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Floudas C.A., Stein O.: The adaptive convexification algorithm: a feasible point method for semi-infinite programming. SIAM J. Optim. 18(4), 1187–1208 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Stein O.: Adaptive convexification in semi-infinite optimization. In: Floudas, C.A., Pardalos, P.M. (eds) Encyclopedia of Optimization, pp. 13–19. Springer, US (2009)CrossRefGoogle Scholar
  6. 6.
    Mitsos A., Lemonidis P., Lee C.K., Barton P.I. et al.: Relaxation-based bounds for semi-infinite programs. SIAM J. Optim. 19, 77 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Tsoukalas A., Rustem B., Pistikopoulos E.N.: A global optimization algorithm for generalized semi-infinite, continuous minimax with coupled constraints and bi-level problems. J. Glob. Optim. 44(2), 235–250 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Tuy H.: Convex programs with an additional reverse convex constraint. J. Optim. Theory Appl. 52, 463–486 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Horst R., Tuy H.: Global Optimization: Deterministic Approaches. Springer, Berlin (1996)zbMATHGoogle Scholar
  10. 10.
    Watson G.: Numerical Experiments with globally convergent methods for semi-infinite programming problems. Lect. Notes Econ. Math. Syst. 215, 193–205 (1983)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsRMIT UniversityMelbourneAustralia
  2. 2.Department of ComputingImperial CollegeLondonUK

Personalised recommendations