Optimization Letters

, Volume 4, Issue 4, pp 619–633 | Cite as

A biased random-key genetic algorithm for road congestion minimization

  • Luciana S. Buriol
  • Michael J. Hirsch
  • Panos M. Pardalos
  • Tania Querido
  • Mauricio G. C. Resende
  • Marcus Ritt
Original Paper


One of the main goals in transportation planning is to achieve solutions for two classical problems, the traffic assignment and toll pricing problems. The traffic assignment problem aims to minimize total travel delay among all travelers. Based on data derived from the first problem, the toll pricing problem determines the set of tolls and corresponding tariffs that would collectively benefit all travelers and would lead to a user equilibrium solution. Obtaining high-quality solutions for this framework is a challenge for large networks. In this paper, we propose an approach to solve the two problems jointly, making use of a biased random-key genetic algorithm for the optimization of transportation network performance by strategically allocating tolls on some of the links of the road network. Since a transportation network may have thousands of intersections and hundreds of road segments, our algorithm takes advantage of mechanisms for speeding up shortest-path algorithms.


Transportation networks System optimal User equilibrium Genetic algorithms Dynamic shortest paths 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahuja R.K., Magnanti T.L., Orlin J.B.: Network Flows—Theory, Algorithms, and Applications. Prentice-Hall, Englewood Cliffs (1993)Google Scholar
  2. 2.
    Arnott R., Small K.: The economics of traffic congestion. Am. Sci. 82, 446–455 (1994)Google Scholar
  3. 3.
    Bai, L.: Computational methods for toll pricing models. Ph.D. thesis, University of Florida, Gainesville, Florida (2004)Google Scholar
  4. 4.
    Bai L., Hearn D.W., Lawphongpanich S.: Relaxed toll sets for congestion pricing problems. In: Hearn, D., Lawphongpanich, S., Smith, M. (eds) Mathematical and Computational Models for Congestion Charging, Springer, Berlin (2006)Google Scholar
  5. 5.
    Bar-Gera, H.: Transportation networks test problems (2007).
  6. 6.
    Bean J.C.: Genetic algorithms and random keys for sequencing and optimization. ORSA J. Comput. 6, 154–160 (1994)zbMATHGoogle Scholar
  7. 7.
    Bureau of Public Roads: Traffic Assignment Manual. Tech. rep., US Dept. of Commerce, Urban Planning Division, Washington, DC (1964)Google Scholar
  8. 8.
    Buriol L., Resende M., Thorup M.: Speeding up dynamic shortest-path algorithms. INFORMS J. Comput. 20, 191–204 (2008). doi: 10.1287/ijoc.1070.0231 CrossRefMathSciNetGoogle Scholar
  9. 9.
    Buriol, L.S., Hirsch, M.J., Pardalos, P., Querido, T., Resende, M.G., Ritt, M.: A hybrid genetic algorithm for road congestion minimization. In: Proceedings of the XLI Simpósio Brasileiro de Pesquisa Operacional, pp. 2515–2526 (2009)Google Scholar
  10. 10.
    Buriol L.S., Resende M.G.C., Ribiero C.C., Thorup M.: A hybrid genetic algorithm for the weight setting problem in OSPF/IS-IS routing. Networks 46, 36–56 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Dahl, J., Landenberghe, L.: CVXOPT (2005).
  12. 12.
    Dial R.B.: Minimal-revenue congestion pricing part I: a fast algorithm for the single origin case. Transp. Res. B 33, 189–202 (1999)CrossRefGoogle Scholar
  13. 13.
    Dial R.B.: Minimal-revenue congestion pricing part II: an efficient algorithm for the general case. Transp. Res. B 34, 645–665 (1999)CrossRefGoogle Scholar
  14. 14.
    Ericsson M., Resende M.G.C., Pardalos P.M.: A genetic algorithm for the weight setting problem in OSPF routing. J. Combin. Optim. 6, 299–333 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Florian M., Hearn D. et al.: Network equilibrium models and algorithms. In: Ball, M.O. (eds) Network Routing, pp. 485–550. Elsevier Science, Amsterdam (1995)CrossRefGoogle Scholar
  16. 16.
    Gonçalves, J., Resende, M.: Biased random-key genetic algorithms for combinatorial optimization. Tech. rep., AT&T Labs Research, Florham Park, NJ (2010). ( To appear in J. Heuristics
  17. 17.
    Hearn, D.W., Ramana, M.: Solving Congestion Toll Pricing Models. Equilibrium and Advances in Transportation Modeling. North-Holland, New York (1988)Google Scholar
  18. 18.
    Hearn, D.W., Ribera, J.: Bounded flow equilibrium by penalty methods. In: Proceedings of the IEEE International Conference on Circuits and Computers, pp. 162–164 (1980)Google Scholar
  19. 19.
    Kim D., Pardalos P.: A solution approach to the fixed charge network flow problem using a dynamic slope scaling procedure. Oper. Res. Lett. 24, 195–203 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Lawphongpanich S., Hearn D.W.: An MPEC approach to second-best toll pricing. Math. Program. Ser. B 101, 33–55 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    LeBlanc L.J., Morlok E.K., Pierskalla W.P.: An efficient approach to solving the road network equilibrium traffic assignment problem. Transp. Res. 9, 309–318 (1975)CrossRefGoogle Scholar
  22. 22.
    Reis, R., Ritt M., Buriol, L.S., Resende, M.G.C.: A biased random-key genetic algorithm for OSPF and DEFT routing to minimize network congestion. Int. Trans. Oper. Res. (2010, in press)Google Scholar
  23. 23.
    Shepherd S., Sumalee S.: A genetic algorithm based approach to optimal toll level and location problems. Netw. Spatial Econ. 4(2), 161–179 (2004)zbMATHCrossRefGoogle Scholar
  24. 24.
    Spears, W., DeJong, K.: On the virtues of parameterized uniform crossover. In: Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 230–236 (1991)Google Scholar
  25. 25.
    Tsekeris T., Voß S.: Design and evaluation of road pricing: state-of-the-art and methodological advances. Netnomics 10, 5–52 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Luciana S. Buriol
    • 1
  • Michael J. Hirsch
    • 2
  • Panos M. Pardalos
    • 3
  • Tania Querido
    • 4
  • Mauricio G. C. Resende
    • 5
  • Marcus Ritt
    • 1
  1. 1.Instituto de InformáticaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Raytheon CompanyAnnapolis JunctionUSA
  3. 3.Department of Industrial and Systems EngineeringUniversity of FloridaGainesvilleUSA
  4. 4.Linear Options ConsultingGainesvilleUSA
  5. 5.Algorithms and Optimization Research DepartmentAT&T Labs ResearchFlorham ParkUSA

Personalised recommendations