Optimization Letters

, Volume 4, Issue 1, pp 147–156 | Cite as

Dynamic shortest path problems with time-varying costs

  • S. Mehdi Hashemi
  • Shaghayegh MokaramiEmail author
  • Ebrahim Nasrabadi
Short Communication


This paper concerns the problem of finding shortest paths from one node to all other nodes in networks for which arc costs can vary with time, each arc has a transit time, and parking with a corresponding time-varying cost is allowed at the nodes. The transit times can also take negative values. A general labeling method, as well as several implementations, are presented for finding shortest paths and detecting negative cycles under the assumption that arc traversal costs are piecewise linear and node parking costs are piecewise constant.


Dynamic shortest paths Time-varying networks Labeling algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahuja R.K., Magnanti T.L., Orlin J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Inc., New Jersey (1993)Google Scholar
  2. 2.
    Ahuja R.K., Orlin J.B., Pallottino S., Scutella M.G.: Dynamic Shortest Paths Minimizing Travel Times and Costs. Networks 41, 197–205 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cai X., Kloks T., Wong C.K.: Time-varying shortest path problems with constraints. Networks 29, 141–149 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chabini L.: Discrete dynamic shortest path problems in transportation applications: Complexity and algorithms with optimal run time. Transp. Res. Rec. 1645, 170–175 (1998)CrossRefGoogle Scholar
  5. 5.
    Cooke L., Halsey E.: The shortest route through a network with time-dependent internodal transit times. J. Math. Anal. Appl. 14, 492–498 (1966)MathSciNetGoogle Scholar
  6. 6.
    Cherkassky B.V., Goldberg A.V.: Negative-cycle detection algorithms. Math. Program. 85, 277–311 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Dreyfus S.E.: An appraisal of some shortest-path algorithms. Oper. Res. 17, 395–412 (1969)zbMATHCrossRefGoogle Scholar
  8. 8.
    Kaufman D.E., Smith R.L.: Fastest paths in time-dependent networks for intelligent vehicle-highway systems application. IVHS J. 1, 1–11 (1993)Google Scholar
  9. 9.
    Nasrabadi, E.: Dynamic Flow in Time-varing Networks, Ph.D. thesis, Amirkabir University of Technology & Technische Universität Berlin, Iran & Germany (2009)Google Scholar
  10. 10.
    Orda A., Rom R.: Shortest-path and minimum-delay algorithms in networks with time-dependent edge length. J. Assoc. Comput. Mach. 37, 607–625 (1990)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Orda A., Rom R.: Minimum weight paths in time-dependent networks. Networks 21, 295–320 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Pallottino S., Scutella M.G.: Shortest path algorithms in transportation models: Classical and innovative aspects. In: Marcotte, P., Nguyen, S. (eds) Equilibrium and advanced transportation modelling, pp. 245–281. Kluwer, Norwell (1998)Google Scholar
  13. 13.
    Philpott A.B., Mees A.I.: Continuous-time shortest path problems with stopping and starting costs. Appl. Math. Lett. 5, 63–66 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Philpott A.B., Mees A.I.: A finite-time algorithm for shortest path problems with time-varying costs. Appl. Math. Lett. 6, 91–94 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Pilpoitt A.B.: Continuous-time shortest path problems and linear programming. SIAM J. Control Optim. 32, 538–552 (1994)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • S. Mehdi Hashemi
    • 1
  • Shaghayegh Mokarami
    • 1
    Email author
  • Ebrahim Nasrabadi
    • 2
  1. 1.Department of Computer ScienceAmirkabir University of TechnologyTehranIran
  2. 2.Institut für MathematikTechnische Universität BerlinBerlinGermany

Personalised recommendations