Optimization Letters

, Volume 4, Issue 2, pp 173–183 | Cite as

Investigation of selection strategies in branch and bound algorithm with simplicial partitions and combination of Lipschitz bounds

  • Remigijus Paulavičius
  • Julius ŽilinskasEmail author
  • Andreas Grothey
Original Paper


Speed and memory requirements of branch and bound algorithms depend on the selection strategy of which candidate node to process next. The goal of this paper is to experimentally investigate this influence to the performance of sequential and parallel branch and bound algorithms. The experiments have been performed solving a number of multidimensional test problems for global optimization. Branch and bound algorithm using simplicial partitions and combination of Lipschitz bounds has been investigated. Similar results may be expected for other branch and bound algorithms.


Global optimization Branch and bound Selection strategies Lipschitz optimization Parallel branch and bound 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baravykaitė M., Čiegis R., Žilinskas J.: Template realization of generalized branch and bound algorithm. Math. Model. Anal. 10(3), 217–236 (2005)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Čiegis, R., Henty, D., Kågström, B., Žilinskas, J. (eds.): Parallel Scientific Computing and Optimization, Springer Optimization and Its Applications, vol. 27. Springer (2009)Google Scholar
  3. 3.
    Csendes T.: Generalized subinterval selection criteria for interval global optimization. Numer. Algorithms 37(1/4), 93–100 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    D’Apuzzo M., Marino M., Migdalas A., Pardalos P.M., Toraldo G.: Parallel computing in global optimization. In: Kontoghiorghes, E.J. (eds) Handbook of Parallel Computing and Statistics, pp. 225–258. Chapman & Hall/CRC, London (2006)Google Scholar
  5. 5.
    Dür M., Stix V.: Probabilistic subproblem selection in branch-and-bound algorithms. J. Comput. Appl. Math. 182(1), 67–80 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ferreira, A., Pardalos, P.M. (eds.): Solving Combinatorial Optimization Problems in Parallel: Methods and Techniques, Lecture Notes in Computer Science, vol. 1054. Springer (1996)Google Scholar
  7. 7.
    Hansen P., Jaumard B.: Lipshitz optimization. In: Horst, R., Pardalos, P.M. (eds) Handbook of Global Optimization, pp. 407–493. Kluwer, Dordrecht (1995)Google Scholar
  8. 8.
    Horst R., Pardalos P.M., Thoai N.V.: Introduction to Global Optimization. Kluwer, Dordrecht (1995)zbMATHGoogle Scholar
  9. 9.
    Jansson, C., Knüppel, O.: A global minimization method: The multi-dimensional case. Tech. rep., TU Hamburg-Harburg (1992)Google Scholar
  10. 10.
    Kreinovich V., Csendes T.: Theoretical justification of a heuristic subbox selection criterion for interval global optimization. Central Eur. J. Oper. Res. 9(3), 255–265 (2001)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Madsen, K., Žilinskas, J.: Testing branch-and-bound methods for global optimization. Tech. Rep. IMM-REP-2000-05, Technical University of Denmark (2000)Google Scholar
  12. 12.
    Migdalas, A., Pardalos, P.M., Storøy, S. (eds): Parallel Computing in Optimization, Applied Optimization, vol. 7. Kluwer, (1997)Google Scholar
  13. 13.
    Pardalos, P.M. (ed.): Parallel Processing of Discrete Problems, IMA Volumes in Mathematics and its Applications, vol. 106. Springer (1999)Google Scholar
  14. 14.
    Paulavičius R., Žilinskas J.: Analysis of different norms and corresponding Lipschitz constants for global optimization in multidimensional case. Inf. Technol. Control 36(4), 383–387 (2007)Google Scholar
  15. 15.
    Paulavičius R., Žilinskas J.: Improved Lipschitz bounds with the first norm for function values over multidimensional simplex. Math. Model. Anal. 13(4), 553–563 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Paulavičius R., Žilinskas J.: Global optimization using the branch-and-bound algorithm with a combination of Lipschitz bounds over simplices. Technol. Econ. Dev. Econ. 15(2), 310–325 (2009)CrossRefGoogle Scholar
  17. 17.
    Sergeyev Y.D., Kvasov D.E.: Global search based on efficient diagonal partitions and a set of Lipschitz constants. SIAM J. Optim. 16(3), 910–937 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Žilinskas A., Žilinskas J.: Global optimization based on a statistical model and simplicial partitioning. Comput. Math. Appl. 44(7), 957–967 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Žilinskas A., Žilinskas J.: Branch and bound algorithm for multidimensional scaling with city-block metric. J. Glob. Optim. 43(2/3), 357–372 (2009)zbMATHCrossRefGoogle Scholar
  20. 20.
    Žilinskas, A., Žilinskas, J.: P-algorithm based on a simplicial statistical model of multimodal functions. TOP (submitted) (2009)Google Scholar
  21. 21.
    Žilinskas J.: Branch and bound with simplicial partitions for global optimization. Math. Model. Anal. 13(1), 145–159 (2008)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Remigijus Paulavičius
    • 1
  • Julius Žilinskas
    • 1
    Email author
  • Andreas Grothey
    • 2
  1. 1.Institute of Mathematics and InformaticsVilniusLithuania
  2. 2.School of MathematicsUniversity of EdinburghEdinburghUK

Personalised recommendations