Advertisement

Optimization Letters

, Volume 4, Issue 1, pp 17–28 | Cite as

Existence of solutions for generalized vector quasi-equilibrium problems

  • X. B. Li
  • S. J. Li
Original Paper

Abstract

This paper deals with three classes of generalized vector quasi-equilibrium problems with or without compact assumptions. Using the well-known Fan-KKM theorems, their existence theorems for them are established. Some examples are given to illustrate our results.

Keywords

Generalized vector quasi-equilibrium problem Weak type Cx-diagonal quasi-convex and strong type Cx-diagonal quasi-convex Fan-KKM theorem 

Mathematics Subject Classification (2000)

49K30 90C29 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blum E., Oettli W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145 (1994)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Noor M.A., Oettli W.: On general nonlinear complementarity problems and quasi-equilibria. Le Matematiche (Catania) 49, 313–331 (1994)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Noor M.A.: General variational inequalities. Appl. Math. lett. 1, 119–121 (1988)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Noor M.A., Noor K.I., Rassias T.M.: Some aspects of variational inequalites. J. Comput. Appl. Math. 47, 285–312 (1993)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Noor M.A.: Some developments in general variational inequlities. Appl. Math. Comput. 152, 199–277 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Noor M.A.: Auxiliary principle for generalized mixed variational-like inequalities. J. Math. Anal. Appl. 215, 75–85 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Noor M.A.: Auxiliary principle technique for equilibrium problems. J. Optim. Theory Appl. 122(2), 371–386 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Noor M.A.: Generalized mixed quasi-equilibrium problems with trifunction. Appl. Math. Lett. 18, 695–700 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Noor M.A., Rassias T.M.: On general hemiequilibrium problems. J. Math. Anal. Appl. 324, 1417–1428 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Chen G.Y., Yang Y.Q., Yu H.: A nonlinear scalarization function and generalized quasi-vector equilibrium problems. J. Glob. Optim. 32, 451–466 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Fu J.Y.: Generalized vector quasi-equilibrium problems. Math. Methods Oper. Res. 52, 57–64 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Fu J.Y., Wan A.H.: Generalized vector quasi-equilibrium problems with set-valued mappings. Math. Methods Oper. Res. 56, 259–268 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Lin L.J., Chen H.L.: The study of KKM theorems with applications to vector equilibrium problems and implicit vector variational inequalities problems. J. Glob. Optim. 32, 135–157 (2005)CrossRefzbMATHGoogle Scholar
  14. 14.
    Lin L.J., Park S., Yu Z.T.: Remarks on fixed points maximal elements and equilibria of generalized games. J. Math. Anal. Appl. 233, 581–596 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Ansari Q.H., Yao J.C.: An existence result for the generalized vector equilibrium problems. Appl. Math. Lett. 12(8), 53–56 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Ansari Q.H., Fabián F.B.: Generalized vector quasi-equilibrium problems with applications. J. Math. Anal. Appl. 277, 246–256 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Hou S.H., Yu H., Chen G.Y.: On vector quasi-equilibrium problems with applications. J. Math. Anal. Appl. 277, 246–256 (2003)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Li S.J., Yang X.Q., Chen G.Y.: Generalized vectorquasi-equilibrum problems. Math. Methods Oper. Res. 61, 385–397 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    Li S.J., Teo K.L., Yang X.Q., Wu S.Y.: Gap function and existence of solutions to generalized vector quasi-equilibrium problems. J. Glob. Optim. 34, 427–440 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    Li S.J., Zeng J.: Existences of solutions for generalized vector quasi-equilibrium problems. Optim. Lett. 2, 341–349 (2008)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Ha C.W.: Minimax and fixed point theorems. Math. Ann. 248, 73–77 (1980)CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Yuan G., Isac X.Z., Tan K.K., Yu J.: The study of minmax inequalities, abstract economics and applictions to variational inequalities and Nash equilibria. Acta Appl. Math. 54, 135–166 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Li S.X.: Quasi-convexity and nondominated solution in multi-objecctive problems. J. Optim. Theory Appl. 88, 197–208 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    Fan K.: Some properties of sets related to fixed point theorems. Math. Ann. 266, 519–537 (1984)CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    Tarafdar E.: A fixed point theorem quivalent to the Fan-Knaster-Kuratowski-Mazurkiewcz theorem. J. Math. Anal. Appl. 128, 475–479 (1987)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.College of Mathematics and ScienceChongqing UniversityChongqingChina

Personalised recommendations