Advertisement

Optimization Letters

, Volume 4, Issue 1, pp 85–96 | Cite as

A method of duality for a mixed vector equilibrium problem

  • S. J. Li
  • P. Zhao
Original Paper

Abstract

In this paper, a dual scheme for a mixed vector equilibrium problem is introduced by using the method of Fenchel conjugate function. Under the stabilization condition, the relationships between the solutions of mixed vector equilibrium problem (MVEP) and dual mixed vector equilibrium problem (DMVEP) are discussed. Moreover, under the same condition, the solutions of MVEP and DMVEP are proved relating to the saddle points of an associated Lagrangian mapping. As applications, this dual scheme is applied to vector convex optimization and vector variational inequality.

Keywords

Mixed vector equilibrium problem Subdifferential Dual mixed vector equilibrium problem Fenchel duality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belenkii, V.Z., Volkonskii, V.A. (eds.) Iterative methods in game theory and programming. Nauka, Moscow (1974) (in Russian)Google Scholar
  2. 2.
    Konno I.V., Schaible S.: Duality for equilibrium problems under generalized monotonicity. J. Optim. Theory Appl. 104, 395–408 (2000)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Ansari Q.H., Siddiqi A.H.: Existence and duality of generalized vector equilibrium problems. J. Math. Anal. Appl. 256, 115–126 (2001)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Konnov I.V., Yao J.C.: Existence of solutions for generalized vector equilibrium problems. J. Math. Anal. Appl. 233, 328–335 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bianchi M., Hadjisavvas N., Schaible S.: Vector equilibrium problems with generalized monotone bifunctions. J. Optim. Theory Appl. 92, 527–542 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bianchi M., Schaible S.: Generalized monotone bifunctions and equilibrium problems. J. Optim. Theory Appl. 90, 31–43 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bianchi M., Pini R.: A note on equilibrium problems with properly quasimonotone functions. J. Global Optim. 20, 67–76 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Oettli W.: A remark on vector-valued equilibria and generalized monotonicity. Acta Math. Vietnam. 22, 215–221 (1997)MathSciNetGoogle Scholar
  9. 9.
    Chadli O., Chbani Z., Riahi H.: Equilibrium problems with generalized monotone bifunctions and applications to variational inequalities. J. Optim. Theory Appl. 105, 299–323 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Martinez-Legaz J.E., Sosa W.: Duality for equilibrium problems. J. Global Optim. 35, 311–319 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Jacinto F.M.O., Scheimberg S.: Duality for generalized equilibrium problem. Optimization 57, 795–805 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Bigi G., Castellani M., Kassay G.: A dual view of equilibrium problems. J. Math. Anal. Appl. 342, 17–26 (2008)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Sach P.H., Kim D.S., Tuan L.A., Lee G.M.: Duality results for generalized vector variational inequalities with set-valued maps. J. Optim. Theory Appl. 136, 105–123 (2008)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Rockafelar R.T.: Dualization of subgradient condition for optimality. Nonlinear Anal. Theory Meth. Appl. 20, 627–646 (1993)CrossRefGoogle Scholar
  15. 15.
    Kum S., Kim G.S., Lee G.M.: Duality for ε-variational inequality. J. Optim. Theory Appl. 139, 649–655 (2008)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Song W.: A generalization of Fenchel duality in set-valued vecto optimization. Math. Meth. Oper. Res. 48, 259–272 (1998)zbMATHCrossRefGoogle Scholar
  17. 17.
    Sosa W., Raupp F.: On minimization over weakly efficient sets. Optimization 56, 207–219 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Tanino T.: Conjugate duality in vector optimization. J. Math. Anal. Appl. 167, 84–97 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Tanino T.: On supremum of a set in a multi-dimensional space. J. Math. Anal. Appl. 130, 386–397 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Li S.J., Yao S.F., Chen C.R.: Saddle points and gap functions for vector equilibrium problems via conjugate duality in vector optimization. J. Math. Anal. Appl. 343, 853–865 (2008)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.College of Mathematics and ScienceChongqing UniversityChongqingChina

Personalised recommendations