Optimization Letters

, Volume 3, Issue 3, pp 411–418

Projection methods for nonconvex variational inequalities

Original Paper

Abstract

In this paper, we introduce and consider a new class of variational inequalities, which is called the nonconvex variational inequalities. We establish the equivalence between the nonconvex variational inequalities and the fixed-point problems using the projection technique. This equivalent formulation is used to discuss the existence of a solution of the nonconvex variational inequalities. We also use this equivalent alternative formulation to suggest and analyze a new iterative method for solving the nonconvex variational inequalities. We also discuss the convergence of the iterative method under suitable conditions. Our method of proof is very simple as compared with other techniques.

Keywords

Monotone operators Iterative method Resolvent operator Convergence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brezis, H.: Operateurs maximaux monotone.Mathematical Studies, vol. 5.North-Holland, Amsterdam (1973)Google Scholar
  2. 2.
    Bounkhel M., Tadji L., Hamdi A.: Iterative schemes to solve nonconvex variational problems. J. Inequal. Pure Appl. Math. 4, 1–14 (2003)Google Scholar
  3. 3.
    Clarke F.H., Ledyaev Y.S., Wolenski P.R.: Nonsmooth Analysis and Control Theory. Springer, Berlin (1998)MATHGoogle Scholar
  4. 4.
    Kinderlehrer D., Stampacchia G.: An Introduction to Variational Inequalities and Their Applications. SIAM, Philadelphia (2000)MATHGoogle Scholar
  5. 5.
    Lions J.L., Stampacchia G.: Variational inequalities. Comm. Pure. Appl. Math. 20, 493–512 (1967)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Aslam Noor, M.: On Variational Inequalities, Ph.D. Thesis. Brunel University, London (1975)Google Scholar
  7. 7.
    Aslam Noor M.: General variational inequalities. Appl. Math. Lett. 1, 119–121 (1988)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Aslam Noor M.: Quasi variational inequalities. Appl. Math. Lett. 1, 367–370 (1988)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Aslam Noor M.: Wiener-Hopf equations and variational inequalities. J. Optim. Theory Appl. 79, 197–206 (1993)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Aslam Noor M.: Some recent advances in variational inequalities, Part II, other concepts, New Zealand. J. Math. 26, 229–255 (1997)MATHMathSciNetGoogle Scholar
  11. 11.
    Aslam Noor M.: New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 251, 217–229 (2000)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Aslam Noor M.: Some developments in general variational inequalities. Appl. Math. Comput. 152, 199–277 (2004)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Aslam Noor M.: Iterative schemes for nonconvex variational inequalities. J. Optim. Theory Appl. 121, 385–395 (2004)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Aslam Noor M.: Fundamentals of mixed quasi variational inequalities. Int. J. Pure Appl. Math. 15, 137–258 (2004)MATHMathSciNetGoogle Scholar
  15. 15.
    Aslam Noor M.: Fundamentals of equilibrium problems. Math. Inequal. Appl. 9, 529–566 (2006)MATHMathSciNetGoogle Scholar
  16. 16.
    Aslam Noor M.: Merit functions for general variational inequalities. J. Math. Anal. Appl. 316, 736–752 (2006)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Aslam Noor M.: Differentiable nonconvex functions and general variational inequalities. Appl. Math. Comput. 199, 623–630 (2008)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Aslam Noor, M.: Some iterative methods for general nonconvex variational inequalities. Comput. Math. Model. 21 (2010)Google Scholar
  19. 19.
    Aslam Noor M.: On a class of general variational inequalities. J. Adv. Math. Stud. 1, 75–86 (2008)Google Scholar
  20. 20.
    Aslam Noor M.: Extended general variational inequalities. Appl. Math. Lett. 22, 182–186 (2009)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Aslam Noor, M.: Variational Inequalities and Applications. Lecture Notes, Mathematics Department. COMSATS Institute of Information Technology, Islamabad, 2007–2009Google Scholar
  22. 22.
    Aslam Noor M., Inayat Noor K.: Projection algorithms for solving system of general variational inequalities. Nonl. Anal. 70, 2700–2706 (2009)MATHCrossRefGoogle Scholar
  23. 23.
    Aslam Noor M., Inayat Noor K., Rassias Th.M.: Some aspects of variational inequalities. J. Comput. Appl. Math. 47, 285–312 (1993)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Aslam Noor, M., Inayat Noor, K., Yaqoob, H.: On general mixed variational inequalities. Acta Appl. Math. (2008). doi:10.1007/s10440-008-9402.4
  25. 25.
    Pang L.P., Shen J., Song H.S.: A modified predictor-corrector algorithm for solving nonconvex generalized variational inequalities. Comput. Math. Appl. 54, 319–325 (2007)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Poliquin R.A., Rockafellar R.T., Thibault L.: Local differentiability of distance functions. Trans. Am. Math. Soc. 352, 5231–5249 (2000)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Stampacchia G.: Formes bilineaires coercitives sur les ensembles convexes. C. R. Acad. Sci. Paris 258, 4413–4416 (1964)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Mathematics DepartmentCOMSATS Institute of Information TechnologyIslamabadPakistan

Personalised recommendations