Advertisement

Optimization Letters

, Volume 3, Issue 3, pp 347–355 | Cite as

Bilinear modeling solution approach for fixed charge network flow problems

  • Steffen RebennackEmail author
  • Artyom Nahapetyan
  • Panos M. Pardalos
Original Paper

Abstract

We present a continuous, bilinear formulation for the fixed charge network flow problem. This formulation is used to derive an exact algorithm for the fixed charge network flow problem converging in a finite number of steps. Some preliminary computational experiments are reported to show the performance of the algorithm.

Keywords

Bilinear modeling Fixed charge network flow problem Exact formulation Concave minimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahuja R.K., Magnanti T.L., Orlin J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Englewood Cliffs (1993)Google Scholar
  2. 2.
    Bomze I.M., Danninger G.: A global optimization algorithm for concave quadratic programming problems. SIAM J. Optim. 3(4), 826–842 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Burer S., Vandenbussche D.: A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations. Math. Program. 113, 259–282 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cabot A., Erenguc S.: Some branch-and-bound procedures for fixed-cost transportation problems. Nav. Res. Log. Q. 31, 145–154 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chinchuluun A., Pardalos P.M., Enkhbat R.: Global minimization algorithms for concave quadratic programming problems. Optimization 54(6), 627–639 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Costa A.M.: A survey on benders decomposition applied to fixed-charge network design problems. Comput. Oper. Res. 32(6), 1429–1450 (2005)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Diestel R.: Graph Theory. Electronic Edition. Springer, New-York (2000)Google Scholar
  8. 8.
    Eksioglu B., Duni-Eksioglu S., Pardalos P.M.: Equilibrium problems and variational models. In: Maugeri, A., Giannesi, F., Pardalos, P.M. (eds) Solving Large Scale Fixed Charge Network Flow Problems, Kluwer, Dordrecht (2001)Google Scholar
  9. 9.
    Floudas C., Visweswaran V.: Handbook of global optimization. In: Horst, R., Pardalos, P. (eds) Quadratic Optimization, pp. 217–269. Kluwer, Dordrecht (1995)Google Scholar
  10. 10.
    Fontes D.B.M.M., Goncalves J.: Heuristic solutions for general concave minimum cost network flow problems. Networks 50(1), 67–76 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Fontes D.B., Hadjiconstantinou E., Christofides N.: A branch-and-bound algorithm for concave network flow problems. J. Glob. Optim. 34(1), 127–155 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Fontes D.B.M.M., Hadjiconstantinou E., Christofides N.: A dynamic programming approach for solving single-source uncapacitated concave minimum cost network flow problems. Eur. J. Oper. Res. 174(2), 1205–1219 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Guenes J., Pardalos P.M.: Supply Chain Optimization. Springer, Berlin (2005)CrossRefGoogle Scholar
  14. 14.
    Guisewite G.M., Pardalos P.M.: Minimum concave-cost network flow problems: applications, complexity, and algorithms. Ann. Oper. Res. 25, 75–100 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Hirsch W., Dantzig G.: The fixed charge problem. Nav. Res. Log. Q. 15, 413–424 (1968)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Kim D., Pardalos P.M.: A solution approach to the fixed charge network flow problem using a dynamic slope scaling procedure. Oper. Res. Lett. 24, 195–203 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Kim D., Pardalos P.M.: Dynamic slope scaling and trust interval techniques for solving concave piecewise linear network flow problems. Networks 35(3), 216–222 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Kim D., Pan X., Pardalos P.M.: An enhanced dynamic slope scaling procedure with Tabu Scheme for fixed charge network flow problems. Comput. Econ. 2–3, 273–293 (2006)CrossRefGoogle Scholar
  19. 19.
    Konno H.: A cutting plane algorithm for solving bilinear programs. Math. Programm. 11, 14–27 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Murty K.: Solving the fixed charge problem by ranking the extreme points. Oper. Res. 16, 268–279 (1968)zbMATHCrossRefGoogle Scholar
  21. 21.
    Nahapetyan A., Pardalos P.M.: A bilinear relaxation based algorithm for concave piecewise linear network flow problem. J. Ind. Manage. Optim. 3, 71–85 (2007)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Nahapetyan A., Pardalos P.M.: Adaptive dynamic cost updating procedure for solving fixed charge network flow problems. Comput. Optim. Appl. 39, 37–50 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Ortega F., Wolsey L.A.: A branch-and-cut algorithm for the single-commodity, uncapacitated, fixed-charge network flow problem. Networks 41(3), 143–158 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Palekar U., Karwan M., Zionts S.: A branch-and-bound method for fixed charge transportation problem. Manag. Sci. 36, 1092–1105 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Pardalos P.M.: Global optimization algorithms for linearly constrained indefinite quadratic problems. Comput. Math. Appl. 21(6-7), 87–97 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Pardalos P.M., Vavasis S.A.: Quadratic programming with one negative eigenvalue is np-hard. J. Glob. Optim. 1, 15–22 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Phillips A.T., Rosen J.B.: A parallel algorithm for constrained concave quadratic global minimization. Math. Program. 42(1–4), 421–448 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Ryoo H.S., Sahinidis N.V.: Global optimization of non-convex NLPs and MINLPs with application in process design. Comput. Chem. Eng. 19(5), 551–566 (1995)CrossRefGoogle Scholar
  29. 29.
    Ryoo H.S., Sahinidis N.V.: A branch-and-reduce approach to global optimization. J. Glob. Optim. 8(2), 107–138 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Sahinidis N.V.: BARON: a general purpose global optimization software package. J. Glob. Optim. 8(2), 201–205 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Tuy H.: Strong polynomial time solvability of minimum concave cost network flow problem. ACTA Math. Vietnam. 25(2), 209–218 (2000)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Steffen Rebennack
    • 1
    Email author
  • Artyom Nahapetyan
    • 2
  • Panos M. Pardalos
    • 1
  1. 1.Department of Industrial and Systems Engineering, Center for Applied OptimizationUniversity of FloridaGainesvilleUSA
  2. 2.Innovative Scheduling Inc.Gainesville Technology Enterprise Center (GTEC)GainesvilleUSA

Personalised recommendations