Optimization Letters

, 3:123 | Cite as

Complementary column generation and bounding approaches for set partitioning formulations

Original Paper

Abstract

We present a complementary column generation feature that produces tight upper bounds, thereby enhancing heuristic and exact column generation approaches for (minimization) set partitioning formulations that possess dense column structures. We also introduce a duality-based lower bound that prompts a useful termination criterion, which can be utilized to mitigate the tailing-off effect induced by column generation approaches. Computations are presented for the one-dimensional bin packing problem and a joint vehicle assembly-routing problem.

Keywords

Column generation Complementary column generation Duality-based lower bound One-dimensional bin packing Vehicle assembly-routing 

References

  1. 1.
    Barnhart C., Johnson E., Nemhauser G., Savelsbergh M., Vance P.H.: Branch-and-price: column generation for solving huge integer programs. Oper. Res. 46, 316–329 (1998)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Beasley, J.E.: Bin packing benchmark instances, at the Brunell University OR-Library. Available at: http://people.brunel.ac.uk/~mastjjb/jeb/orlib/binpackinfo.html
  3. 3.
    Blazewicz J., Dror M., Weglarz J.: Mathematical programming formulations for machine scheduling: a survey. Eur. J. Oper. Res. 51, 283–300 (1991)MATHCrossRefGoogle Scholar
  4. 4.
    Boysen, N., Fliedner, M., Scholl, A.: Sequencing mixed-model assembly lines: survey, classification and model critique. Eur. J. Oper. Res. Available online 17 September (2007, in press)Google Scholar
  5. 5.
    Valériode Carvalho J.M.: LP models for bin packing and cutting stock problems. Eur. J. Oper. Res. 141, 253–273 (2002)CrossRefGoogle Scholar
  6. 6.
    Desrosiers J., Lübbecke M.E.: A primer in column generation. In: Desaulniers, G., Desrosiers, J., Solomon, M.M. (eds) Column Generation, Springer, Germany (2005)Google Scholar
  7. 7.
    Balas E.: Some valid inequalities for the set partitioning problem. Ann. Discrete Math. 1, 13–47 (1977)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Balas E., Padberg M.W.: Set partitioning: a survey. SIAM Rev. 18, 710–760 (1976)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Falkenauer E.: A hybrid grouping genetic algorithm for bin packing. J. Heuristics 2, 5–30 (1994)CrossRefGoogle Scholar
  10. 10.
    Ghoniem, A., Sherali, H.D.: Set partitioning/packing versus assignment formulations for subassembly matching problems. Manuscript, Grado Department of Industrial and Systems Engineering (0118), Virginia Polytechnic Institute and State University, Blacksburg, 24061 (2007)Google Scholar
  11. 11.
    Lübbecke M.E., Desrosiers J.: Selected topics in column generation. Oper. Res. 53(6), 1007–1023 (2005)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Nemhauser G.L., Wolsey L.A.: Integer and Combinatorial Optimization, 2nd edn. Wiley-Interscience, New York (1999)MATHGoogle Scholar
  13. 13.
    Ryan D.M., Falkner J.C.: On the integer properties of scheduling set partitioning models. Eur. J. Oper. Res. 35, 442–456 (1988)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Savelsbergh M.: A branch-and-price algorithm for the generalized assignment problem. Oper. Res. 45, 831–841 (1997)MATHMathSciNetGoogle Scholar
  15. 15.
    Sherali H.D., Adams W.P.: A hierarchy of relaxations and convex hull characterizations for mixed integer zero-one programming problems. Discrete Appl. Math. 52, 83–106 (1994)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Sherali, H.D., Ghoniem, A.: Joint vehicle assembly-routing problems: An integrated modeling and optimization approach. Networks (to appear)Google Scholar
  17. 17.
    Sherali H.D., Lee Y.: Tighter representations for set partitioning problems. Discrete Appl. Math. 68, 153–167 (1996)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Sherali H.D., Smith J.C.: Improving discrete model representations via symmetry considerations. Manage. Sci. 47, 1396–1407 (2001)CrossRefGoogle Scholar
  19. 19.
    Wolsey L.A.: Integer Programming. Wiley, New York (1998)MATHGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Finance and Operations Management, Isenberg School of ManagementUniversity of MassachusettsAmherstUSA
  2. 2.Grado Department of Industrial and Systems Engineering (0118)Virginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations