Advertisement

Optimization Letters

, Volume 2, Issue 3, pp 363–375 | Cite as

Existence and sum decomposition of vertex polyhedral convex envelopes

  • Fabio TardellaEmail author
Original Paper

Abstract

Convex envelopes are a very useful tool in global optimization. However finding the exact convex envelope of a function is a difficult task in general. This task becomes considerably simpler in the case where the domain is a polyhedron and the convex envelope is vertex polyhedral, i.e., has a polyhedral epigraph whose vertices correspond to the vertices of the domain. A further simplification is possible when the convex envelope is sum decomposable, i.e., the convex envelope of a sum of functions coincides with the sum of the convex envelopes of the summands. In this paper we provide characterizations and sufficient conditions for the existence of a vertex polyhedral convex envelope. Our results extend and unify several results previously obtained for special cases of this problem. We then characterize sum decomposability of vertex polyhedral convex envelopes, and we show, among else, that the vertex polyhedral convex envelope of a sum of functions coincides with the sum of the vertex polyhedral convex envelopes of the summands if and only if the latter sum is vertex polyhedral.

Keywords

Convex envelope Global optimization Convex analysis Multilinear functions Edge-concavity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adjiman C.S., Dallwig S., Floudas C.A., Neumaier A. (1998). A global optimization method, αBB, for general twice-differentiable NLPs I. Theor. Adv. Comput. Chem. Eng. 22: 1137–1158 Google Scholar
  2. 2.
    Androulakis I.P., Maranas C.D., Floudas C.A. (1995). αBB: A global optimization method for general constrained nonconvex problems. J. Glob. Optim. 7: 337–363 zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Al-Khayyal F.A., Falk J.E. (1983). Jointly constrained biconvex programming. Math. Oper. Res. 8: 273–286 zbMATHMathSciNetGoogle Scholar
  4. 4.
    Benson H.P. (2002). Using concave envelopes to globally solve the nonlinear sum of ratios problem. J. Glob. Optim. 22: 343–364 zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Benson H.P. (2004). Concave envelopes of monomial functions over rectangles. J. Naval Res. Logist. 51: 467–476 zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Benson H.P. (2004). On the construction of convex and concave envelope formulas for bilinear and fractional functions on quadrilaterals. Comput. Optim. Appl. 27: 5–22 zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Benson H.P., Erenguc S.S. (1998). Using convex envelopes to solve the interactive fixed-charge linear programming problem. J. Optim. Theory Appl. 59: 223–246 MathSciNetGoogle Scholar
  8. 8.
    Crama Y. (1993). Concave extensions for nonlinear 0-1 maximization problems. Math. Programming 61: 53–60 CrossRefMathSciNetGoogle Scholar
  9. 9.
    Falk J.E. (1969). Lagrange multipliers and nonconvex programs. SIAM J. Control 7: 534–545 zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Falk J.E. (1974). Sharper bounds on nonconvex programs. Oper. Res. 22: 410–413 zbMATHMathSciNetGoogle Scholar
  11. 11.
    Falk J.E., Hoffman K.R. (1976). A successive underestimation method for concave minimization problems. Math. Oper. Res. 1: 251–259 zbMATHCrossRefGoogle Scholar
  12. 12.
    Falk J.E., Soland R.M. (1969). An algorithm for separable nonconvex programming problems. Manage. Sci. 15: 550–569 MathSciNetzbMATHGoogle Scholar
  13. 13.
    Horst R. (1984). On the convexification of nonlinear programming problems: an applications-oriented survey. Eur. J. Oper. Res. 15: 382–392 zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Horst R., Tuy H. (1993). Global Optimization: Deterministic Approaches, 2nd edn. Springer, Berlin Google Scholar
  15. 15.
    Giannessi, F, Tardella, F.: Connections between nonlinear programming and discrete optimization. In: Handbook of Combinatorial Optimization, vol. 1, pp. 149–188. Kluwer, Boston (1998)Google Scholar
  16. 16.
    Grotzinger S.J. (1985). Supports and convex envelopes. Math. Programming 31: 339–347 zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Kalantari B., Rosen J.B. (1987). An algorithm for global minimization of linearly constrained concave quadratic functions. Math. Oper. Res. 12: 544–561 zbMATHMathSciNetGoogle Scholar
  18. 18.
    Kleibohm K. (1967). Bemerkungen zum Problem der nichtkonvexen Programmierung. Unternehmensforschung 11: 49–60 zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    McCormick G.P. (1976). Computability of global solutions to factorable nonconvex programs. I. Convex underestimating problems. Math. Programming 10: 147–175 zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Meyer C.A., Floudas C.A. (2003). Convex Hull of Trilinear Monomials with Positive or Negative Domains: Facets of the Convex and Concave Envelopes. In: Floudas, C.A., Pardalos, P.M. (eds) Frontiers In Global Optimization, pp 327–352. Kluwer, Boston Google Scholar
  21. 21.
    Meyer C.A., Floudas C.A. (2004). Convex Hull of Trilinear Monomials with Mixed Sign Domains. J. Glob. Optim. 29: 125–155 zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Meyer C.A., Floudas C.A. (2005). Convex envelopes for edge-concave functions. Math. Programming 103: 207–224 zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Rockafellar RT (1970). Convex Analysis, Princeton Mathematical Series, No. 28. Princeton University Press, Princeton Google Scholar
  24. 24.
    Rikun A.D. (1997). A convex envelope formula for multilinear functions. J. Glob. Optim. 10: 425–437 zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Ryoo H.S., Sahinidis N.V. (2001). Analysis of bounds for multilinear functions. J. Glob. Optim. 19: 403–424 zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Sherali H.D. (1997). Convex envelopes of multilinear functions over a unit hypercube and over special discrete sets. Acta Math. Vietnam 22: 245–270 zbMATHMathSciNetGoogle Scholar
  27. 27.
    Sherali H.D., Alameddine A. (1990). An explicit characterization of the convex envelope of a bivariate bilinear function over special polytopes. Ann. Oper. Res. 25: 197–209 zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Tardella F. (1988). On a class of functions attaining their maximum at the vertices of a polyhedron. Discrete Appl. Math. 22: 191–195 CrossRefMathSciNetGoogle Scholar
  29. 29.
    Tardella F. (1990). On the equivalence between some discrete and continuous optimization problems. Ann. Oper. Res. 25: 291–300 zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Tardella F. (2003). On the existence of polyhedral convex envelopes. In: Floudas, C.A., Pardalos, P.M. (eds) Frontiers In Global Optimization, pp 149–188. Kluwer, Boston Google Scholar
  31. 31.
    Tardella, F.: Constructing vertex polyhedral convex envelopes, forthcomingGoogle Scholar
  32. 32.
    Tawarmalani M., Sahinidis N.V. (2001). Semidefinite relaxations of fractional programs via novel convexification techniques. J. Glob. Optim. 20: 137–158 zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Tawarmalani M., Sahinidis N.V. (2002). Convex extensions and envelopes of lower semi-continuous functions. Math. Programming 93: 247–263 zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Tawarmalani, M., Sahinidis, N.V.: Convexification and global optimization in continuous and mixed-integer nonlinear programming. In: Theory, Algorithms, Software, and Applications, Nonconvex Optimization and its Applications, Vol. 65. Kluwer, Dordrecht (2002)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Dipartimento di Matematica per le Decisioni, Economiche Finanziarie e Assicurative, Facoltà di EconomiaUniversità di Roma “La Sapienza”RomeItaly

Personalised recommendations