Optimization Letters

, Volume 2, Issue 2, pp 267–280 | Cite as

A multi-parametric programming approach for constrained dynamic programming problems

  • Nuno P. Faísca
  • Konstantinos I. Kouramas
  • Pedro M. Saraiva
  • Berç Rustem
  • Efstratios N. Pistikopoulos
Original Paper

Abstract

In this work, we present a new algorithm for solving complex multi-stage optimization problems involving hard constraints and uncertainties, based on dynamic and multi-parametric programming techniques. Each echelon of the dynamic programming procedure, typically employed in the context of multi-stage optimization models, is interpreted as a multi-parametric optimization problem, with the present states and future decision variables being the parameters, while the present decisions the corresponding optimization variables. This reformulation significantly reduces the dimension of the original problem, essentially to a set of lower dimensional multi-parametric programs, which are sequentially solved. Furthermore, the use of sensitivity analysis circumvents non-convexities that naturally arise in constrained dynamic programming problems. The potential application of the proposed novel framework to robust constrained optimal control is highlighted.

Keywords

Dynamic programming Constrained multi-stage models Parametric programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apt Krzysztof R. (2003). Principles of Constraint Programming. Cambridge University Press, Cambridge Google Scholar
  2. 2.
    Başar T. and Olsder G.J. (1982). Dynamic Noncooperative Game Theory. Academic, London MATHGoogle Scholar
  3. 3.
    Bazaraa M.S. and Shetty C.M. (1979). Nonlinear Programming—Theory and Algorithms. Wiley, New York MATHGoogle Scholar
  4. 4.
    Bellman R. (2003). Dynamic Programming. Dover Publications, Mineola MATHGoogle Scholar
  5. 5.
    Ben-Tal A. and Nemirovski A. (2000). Robust solutions of linear programming problems contaminated with uncertain data. Math. Program. Ser. A 88: 411–424 MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bertsekas D.P. (2005). Dynamic Programming and Optimal Control, 3rd edn. Athena Scientific, Belmont MATHGoogle Scholar
  7. 7.
    Borrelli F., Bemporad A. and Morari M. (2003). Geometric algorithm for multiparametric linear programming. J. Optim. Theory Appl. 118(3): 515–540 MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Borrelli F., Batotić M., Bemporad A. and Morari M. (2005). Dynamic programming for constrained optimal control of discrete-time linear hybrid systems. Automatica 41: 1709–1721 MATHCrossRefGoogle Scholar
  9. 9.
    Dua V., Bozinis A. and Pistikopoulos E.N. (2002). A multiparametric programming approach for mixed-integer quadratic engineering problems. Comput. Chem. Eng. 26: 715–733 CrossRefGoogle Scholar
  10. 10.
    Dua V., Papalexandri K.P. and Pistikopoulos E.N. (2004). Global optimization issues in multiparametric continuous and mixed-integer optimization problems. J. Glob. Optim. 30: 59–89 MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    El-Ghaoui L. and Lebret H. (1997). Robust solutions to least-square problems with uncertain data matrices. SIAM J. Matrix Anal. Appl. 18: 1035–1064 MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Fiacco A.V. (1976). Sensitivity analysis for nonlinear programming using penalty methods. Math. Program. 10: 287–311 MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Fiacco A.V. (1983). Introduction to Sensitivity and Stability Analysis in Nonlinear Programming. Academic, New York MATHGoogle Scholar
  14. 14.
    Kouramas, K.I., Faísca, N.P., Rustem, B., Pistikopoulos, E.N.: Design of robust parametric controllers for constrained multi-stage optimization problems (to be submitted to Automatica) (2007)Google Scholar
  15. 15.
    Lin X., Janak S.L. and Floudas C.A. (2004). A new robust optimization approach for scheduling under uncertainty: I. Bounded uncertainty. Comput. Chem. Eng. 28(6–7): 1069–1085 CrossRefGoogle Scholar
  16. 16.
    Mayne D.Q., Raković S.V., Findeisen R. and Allgöwer F. (2006). Robust output feedback model predictive control of contrained linear systems. Automatica 7(42): 1217–1222 CrossRefGoogle Scholar
  17. 17.
    Pistikopoulos E.N., Georgiadis M.C. and Dua V. (2006). Multi-parametric programming: theory, algorithms, and applications, vol. 1. Wiley-VCH, Weinheim Google Scholar
  18. 18.
    Pistikopoulos E.N., Bozinis N.A., Bemporad A. and Morari M. (2000). On-line optimization via off-line parametric optimization tools. Comput. Chem. Eng. 24: 183 CrossRefGoogle Scholar
  19. 19.
    Rawlings, J.B.: Tutorial: model predictive control technology. In: Proceedings of the American Control Conference, pp. 662–676. San Diego, USA (1999)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Nuno P. Faísca
    • 1
  • Konstantinos I. Kouramas
    • 1
  • Pedro M. Saraiva
    • 2
  • Berç Rustem
    • 1
  • Efstratios N. Pistikopoulos
    • 1
  1. 1.Centre for Process Systems EngineeringImperial College LondonLondonUK
  2. 2.Gepsi, PSE GroupUniversity of CoimbraCoimbraPortugal

Personalised recommendations