Optimization Letters

, Volume 2, Issue 2, pp 171–175 | Cite as

An approximation algorithm for network design problems with downwards-monotone demand functions

Original paper

Abstract

Building on an existing 2-approximate algorithm for the class of network design problems with downwards-monotone demand functions, many of which are NP-hard, we present an algorithm that produces solutions that are at least as good as and typically better than solutions produced by the existing algorithm.

Keywords

Network design problems Approximation algorithms Spanning forests Integer programs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bar-Yehuda, R., Keren, B., Freund, A., Rawitz, D.: Local ratio: a unified framework for approximation algorithms. In memoriam: Shimon Even 1935–2004. ACM Comput. Surv. (CSUR), 36(4), 422–463, (2004)Google Scholar
  2. 2.
    Corman T., Leiserson C., Rivest R. and Stein C. (2001). Introduction to algorithms 2nd edn. MIT Press, Cambridge Google Scholar
  3. 3.
    Goemans, M.X., Williamson, D.P.: The primal-dual method for approximation algorithms and its application to network design problems. In: Hochbaum, D. (ed.) Approximation Algorithms, pp. 144–191 (1997)Google Scholar
  4. 4.
    Goemans M.X. and Williamson D.P. (1995). A general approximation technique for constrained forest problems. SIAM J. Comput. 24: 296–317 MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Goemans M.X. and Williamson D.P. (1994). Approximating minimum-cost graph problems with spanning tree edges. Oper. Res. Lett. 16: 183–244 MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Imielińska C., Kalantari B. and Khachiyan L. (1993). A greedy heuristic for a minimum-weight forest problem. Oper. Res. Lett. 14: 65–71 CrossRefMathSciNetGoogle Scholar
  7. 7.
    Laszlo M. and Mukherjee S. (2005). Another greedy heuristic for the constrained forest problem. Oper. Res. Lett. 33(6): 629–633 MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Reinelt G. (1991). TSP–LIB A traveling salesman library. ORSA J. Comput. 3: 376–384 MATHGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Graduate School of Computer and Information SciencesNova Southeastern UniversityFort LauderdaleUSA

Personalised recommendations