Optimization Letters

, Volume 2, Issue 1, pp 15–25 | Cite as

A note on strong duality in convex semidefinite optimization: necessary and sufficient conditions

Original Paper

Abstract

A strong duality which states that the optimal values of the primal convex problem and its Lagrangian dual problem are equal (i.e. zero duality gap) and the dual problem attains its maximum is a corner stone in convex optimization. In particular it plays a major role in the numerical solution as well as the application of convex semidefinite optimization. The strong duality requires a technical condition known as a constraint qualification (CQ). Several CQs which are sufficient for strong duality have been given in the literature. In this note we present new necessary and sufficient CQs for the strong duality in convex semidefinite optimization. These CQs are shown to be sharper forms of the strong conical hull intersection property (CHIP) of the intersecting sets of constraints which has played a critical role in other areas of convex optimization such as constrained approximation and error bounds.

Keywords

Semidefinite optimization Constraint qualifications Strong duality Convex programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balakrishnan V. and Vandenberghe L. (2003). Semidefinite programming duality and linear time-invariant systems. IEEE Trans. Autom. Control 48: 30–41 CrossRefMathSciNetGoogle Scholar
  2. 2.
    Borwein J.M. and Lewis A.S. (1992). Partially finite convex programming, part I: Quasi relative interiors and duality theory. Math. Progr. 57: 15–48 MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear matrix inequalities in systems and control theory. In: SIAM Stud. Appl. Math., vol. 15. SIAM, Philadelphia (1994)Google Scholar
  4. 4.
    Boyd S. and Vandenberghe L. (2004). Convex Optimization. Cambridge University Press, Cambridge MATHGoogle Scholar
  5. 5.
    Burachik R.S. and Jeyakumar V. (2005). A simple closure condition for the normal cone intersection formula. Proc. Am. Math. Soc. 133: 1741–1748 MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Burachik R.S. and Jeyakumar V. (2005). A new geometric condition for Fenchel’s duality in infinite dimensional spaces. Math. Program. Ser. B 104: 229–233 MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Burachik R.S., Jeyakumar V. and Wu Z.Y. (2006). Necessary and sufficient conditions for stable conjugate duality. Nonlin. Anal. 64: 1998–2006 MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Deutsch F. (1998). The role of conical hull intersection property in convex optimization and approximation. In: Chui, C.K. and Schumaker, L.L. (eds) Approximation Theory, vol. IX, pp. Vanderbilt University Press, Nashville Google Scholar
  9. 9.
    Deutsch F., Li W. and Swetits J. (1999). Fenchel duality and the strong conical hull intersection property. J. Optim. Theory Appl. 102: 681–695 MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Guignard M. (1969). Generalized Kuhn-Tucker conditions for mathematical programming problems in a Banach space. SIAM J. Control 7: 232–241 MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Helmberg C. (2002). Semidefinite programming. Eur. J. Oper. Res. 137: 461–482 MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hiriart-Urruty J-B. and Lemarechal C. (1993). Convex Analysis and Minimization Algorithms vols. I, II. Springer, Heidelberg Google Scholar
  13. 13.
    Jeyakumar V. (2006). The strong conical hull intersection property for convex programming. Math. Progr. Ser. A 106: 81–92 MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Jeyakumar V. and Nealon M. (2000). Complete characterizations of optimality for convex semidefinite programming. Can. Math. Soc. Conf. Proc 27: 165–173 MathSciNetGoogle Scholar
  15. 15.
    Jeyakumar V. and Wolkowicz H. (1992). Generalizations of Slater’s constraint qualification for infinite convex programs. Math. Progr. 57: 85–102 MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Jeyakumar V., Lee G.M. and Dinh N. (2003). New sequential Lagrange multiplier conditions characterizing optimality without constraint qualification for convex programs. SIAM J. Optim. 14: 534–547 MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    De Oliveira M.C. (2004). Investigating duality on stability conditions. Syst. Control Lett. 52: 1–6 MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Ramana M.V. (1997). An exact duality theory for semidefinite programming and its complexity implications. Math. Progr. 77: 129–162 MathSciNetGoogle Scholar
  19. 19.
    Ramana M.V., Tunçcel L. and Wolkowicz H. (1997). Strong duality for semidefinite programming. SIAM J. Optim. 7: 644–662 CrossRefMathSciNetGoogle Scholar
  20. 20.
    Shapiro, A.: On duality theory of conic linear problems, semi-infinite programming (Alicante, 1999). In: Nonconvex Optim. Appl. vol. 57, pp. 135–165. Kluwer, Dordrecht (2001)Google Scholar
  21. 21.
    Todd M.J. (2001). Semidefinite optimization. Acta Numer. 10: 515–560 MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Vandenberghe L. and Boyd S. (1996). Semidefinite programming. SIAM Rev. 38: 49–95 MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Wolkowicz, H., Saigal, R., Vandenberghe, L.: Handbook of semidefinite programming. In: International Series in Operations Research and Management Science, vol. 27. Kluwer, Dordrecht (2000)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsUniversity of New South WalesSydneyAustralia

Personalised recommendations