Advertisement

Optimization Letters

, Volume 1, Issue 1, pp 21–32 | Cite as

Proximality and Chebyshev sets

  • Jonathan M. BorweinEmail author
Original Paper

Abstract

This paper is a companion to a lecture given at the Prague Spring School in Analysis in April 2006. It highlights four distinct variational methods of proving that a finite dimensional Chebyshev set is convex and hopes to inspire renewed work on the open question of whether every Chebyshev set in Hilbert space is convex.

Keywords

Chebyshev sets Nonlinear analysis Convex analysis Variational analysis Proximal points Best approximation Farthest points 

1991 Mathematics Subject Classification

47H05 46N10 46A22 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asplund E. (1969) Cebysev sets in Hilbert space. Trans. Am. Math. Soc. 144, 235–240zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Borwein J.M. (1984) Integral characterizations of Euclidean space. Bull. Aust. Math. Soc. 29, 357–364zbMATHCrossRefGoogle Scholar
  3. 3.
    Borwein J.M.: David Bailey: Mathematics by Experiment. A K Peters Ltd., Natick (2004)Google Scholar
  4. 4.
    Borwein J.M., Fitzpatrick S.P. (1989) Existence of nearest points in Banach spaces. Can. J. Math. 61, 702–720MathSciNetGoogle Scholar
  5. 5.
    Borwein J.M., Fitzpatrick S.P., Giles J.R. (1987) The differentiability of real functions on normed linear spaces using generalized gradients. J. Optim. Theory Appl. 128, 512–534zbMATHMathSciNetGoogle Scholar
  6. 6.
    Borwein J.M., Giles J.R. (1987) The proximal normal formula in Banach space. Trans. Am. Math. Soc. 302:371–381zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Borwein J.M., Lewis A.S.: Convex Analysis and Nonlinear Optimization, (enlarged edition). CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, Berlin Heidelberg New York (2005)Google Scholar
  8. 8.
    Borwein J.M., Treiman J.S., Zhu Q.J. (1999) Partially smooth variational principles and applications. Nonlinear Anal. 35, 1031–1059MathSciNetCrossRefGoogle Scholar
  9. 9.
    Borwein J.M., Vanderwerff J.S.: Convex Functions: A Handbook. Encyclopedia of Mathematics and Applications. Cambridge University Press, Cambridge (2007) (to appear)Google Scholar
  10. 10.
    Borwein J.M., Zhu Q.J. (2005) Techniques of Variational Analysis: an Introduction CMS Books in Mathematics. Springer, Berlin Heidelberg New YorkGoogle Scholar
  11. 11.
    Brown A.L. (1974) A rotund, reflexive space having a subspace of co-dimension 2 with a discontinuous metric projection. Michigan Math. J. 21, 145–151zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Clarke F.H. (1983) Optimization and Nonsmooth Analysis Canadian Mathematical Society Series of Monographs and Advanced Texts. Wiley, New YorkGoogle Scholar
  13. 13.
    Deutsch F.R. (2001) Best Approximation in Inner Product Spaces. Springer, Berlin Heidelberg New YorkzbMATHGoogle Scholar
  14. 14.
    Duda J. (2006) On the size of the set of points where the metric projection is discontinuous. J. Nonlinear Convex Anal. 7, 67–70zbMATHMathSciNetGoogle Scholar
  15. 15.
    Fabian M., Habala P., Hájek P., Montesinos V., Pelant J., Zizler V. (2001) Functional Analysis and Infinite-dimensional Geometry CMS Books in Mathematics. Springer, Berlin Heidelberg New YorkGoogle Scholar
  16. 16.
    Giles J.R. (1982) Convex Analysis with Application in the Differentiation of Convex Functions. Pitman, BostonzbMATHGoogle Scholar
  17. 17.
    Giles J.R.(1988) Differentiability of distance functions and a proximinal property inducing convexity. Proc. Am. Math. Soc. 104, 458–464zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Hiriart-Urruty J.-B. (1983) A short proof of the variational principle for approximate solutions of a minimization problem. Am. Math. Monthly 90, 206–207zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Hiriart-Urruty J.-B. (1998) Ensemble de Tchebychev vs ensemble convexe: l’état de la situation vu via l’analyse convexe nonlisse. Ann. Sci. Math. Québec 22, 47–62zbMATHMathSciNetGoogle Scholar
  20. 20.
    Hiriart-Urruty J.-B., Lemaréchal C. (1993) Convex Analysis and Minimization Algorithms. Springer, Berlin Heidelberg New YorkzbMATHGoogle Scholar
  21. 21.
    Johnson Gordon G. (2005) Closure in a Hilbert space of a preHilbert space Chebyshev set. Topology Appl. 153, 239–244MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Klee V. (1961) Convexity of Cebysev sets. Math. Ann. 142, 291–304MathSciNetCrossRefGoogle Scholar
  23. 23.
    Koščeev V.A. (1979) An example of a disconnected sun in a Banach space. (Russian). Mat. Zametki 158, 89–92Google Scholar
  24. 24.
    Lau K.S. (1978) Almost Chebyshev subsets in reflexive Banach spaces. Indiana Univ. Math. J 2, 791–795CrossRefGoogle Scholar
  25. 25.
    Rockafellar R.T. (1970) Convex Analysis. Princeton University Press, PrincetonzbMATHGoogle Scholar
  26. 26.
    Vlasov L.P. (1970) Almost convex and Chebyshev subsets. Math. Notes Acad. Sci. USSR 8, 776–779zbMATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Westfall J., Frerking U. (1989) On a property of metric projections onto closed subsets of Hilbert spaces. Proc. Am. Math. Soc. 105, 644–651CrossRefGoogle Scholar
  28. 28.
    Zălinescu C. (2002) Convex Analysis in General Vector Spaces. World Scientific Press, SingaporezbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Faculty of Computer ScienceDalhousie UniversityHalifaxCanada

Personalised recommendations