Earthquake Science

, Volume 24, Issue 1, pp 55–64 | Cite as

Surface wave tomography on a large-scale seismic array combining ambient noise and teleseismic earthquake data

  • Yingjie Yang
  • Weisen Shen
  • Michael H. Ritzwoller


We discuss two array-based tomography methods, ambient noise tomography (ANT) and two-planewave earthquake tomography (TPWT), which are capable of taking advantage of emerging large-scale broadband seismic arrays to generate high resolution phase velocity maps, but in complementary period band: ANT at 8–40 s and TPWT at 25–100 s period. Combining these two methods generates surface wave dispersion maps from 8 to 100 s periods, which can be used to construct a 3D vS model from the surface to ∼200 km depth. As an illustration, we apply the two methods to the USArray/Transportable Array. We process seismic noise data from over 1 500 stations obtained from 2005 through 2009 to produce Rayleigh wave phase velocity maps from 8 to 40 s period, and also perform TPWT using ∼450 teleseismic earthquakes to obtain phase velocity maps between 25 and 100 s period. Combining dispersion maps from ANT and TPWT, we construct a 3D vS model from the surface to a depth of 160 km in the western and central USA. These surface wave tomography methods can also be applied to other rapidly growing seismic networks such as those in China.

Key words

ambient noise Rayleigh wave surface wave tomography 

CLC number



  1. Arroucau P, Rawlinson N and Sambridge M (2010). New insight into Cainozoic sedimentary basins and Palaeozoic suture zones in southeast Australia from ambient noise surface wave tomography. Geophys Res Lett37: L07303.CrossRefGoogle Scholar
  2. Barmin M P, Ritzwoller M H and Levshin A L (2001). A fast and reliable method for surface wave tomography. Pure Appl Geophys158(8): 1 351–1 375.CrossRefGoogle Scholar
  3. Behr Y, Townend J, Bannister S and Savage M K (2010). Shear velocity structure of the Northland Peninsula, New Zealand, inferred from ambient noise correlations. J Geophys Res115: B05309.Google Scholar
  4. Bensen G D, Ritzwoller M H, Barmin M P, Levshin A L, Lin F, Moschetti M P, Shapiro N M and Yang Y (2007). Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys J Int169: 1 239–1 260.CrossRefGoogle Scholar
  5. Bensen G D, Ritzwoller M H and Yang Y (2009). A 3-D shear velocity model of the crust and uppermost mantle beneath the United States from ambient seismic noise. Geophys J Int177: 1 177–1 196.CrossRefGoogle Scholar
  6. Bensen G D, Ritzwoller M H and Shapiro N M (2008). Broadband ambient noise surface wave tomography across the United States. J Geophys Res113(B5): B05306, doi:10.1029/2007JB005248.Google Scholar
  7. Camp V E and Ross M E (2004). Mantle dynamics and genesis of mafic magmatism in the intermontane Pacific Northwest. J Geophys Res109: B08204, doi: 10.1029/2003JB002838.Google Scholar
  8. Cho K H, Herrmann R B, Ammon C J and Lee K (2007). Imaging the upper crust of the Korean Peninsula by surface-wave tomography. Bull Seismol Soc Am97: 198–207.CrossRefGoogle Scholar
  9. Chulick G S and Mooney W D (2002). Seismic structure of the crust and uppermost mantle of North America and adjacent oceanic basins: A synthesis. Bull Seismol Soc Am92(6): 2 478–2 492, doi:10.1785/0120010188.CrossRefGoogle Scholar
  10. Dahlen F A, Hung S -H and Nolet G (2000). Frechet kernels for finite frequency travel times I. Theory. Geophys J Int141: 157–174.CrossRefGoogle Scholar
  11. Fang L H, Wu J P, Ding Z F and Panza G F (2010). High resolution Rayleigh wave group velocity tomography in North China from ambient seismic noise. Geophys J Int181(2): 1 171–1 182.Google Scholar
  12. Forsyth D W and Li A (2005). Array-analysis of twodimensional variations in surface wave phase velocity and azimuthal anisotropy in the presence of multipathing interference. In: Levander A and Nolet G eds. Seismic Earth: Array Analysis of Broadband Seismograms. Geo physical Monograph 157, AGU, Washington DC, 81–98.CrossRefGoogle Scholar
  13. Forsyth D W, Webb S, Dorman L and Shen Y (1998). Phase velocities of Rayleigh waves in the MELT experiment on the East Pacific Rise. Science280: 1 235–1 238.CrossRefGoogle Scholar
  14. Gilbert H and Fouch M J (2007). Complex upper mantle seismic structure across the southern Colorado Plateau/Basin and Range II: Results from receiver function analysis. Eos Trans AGU88(52), Fall Meet Suppl, Abstract S41B-0558.Google Scholar
  15. Humphreys E, Hessler E, Dueker K, Erslev E, Farmer G L and Atwater T (2003). How Laramide-age hydration of North America by the Farallon slab controlled subsequent activity in the western U.S. In: Klemperer S L and Ernst W G eds. The George A. Thompson Volume: The Lithosphere of Western North America and Its Geophysical Characterization. Int. Book Ser, vol.7, Geol Soc of Am, Boulder, Colo, 524–544.Google Scholar
  16. Kang T S and Shin J S (2006). Surface-wave tomography from ambient seismic noise of accelerograph networks in southern Korea. Geophys Res Lett33(17): L17303.CrossRefGoogle Scholar
  17. Li A, Forsyth D W and Fischer K M (2003). Shear velocity structure and azimuthal anisotropy beneath eastern North American from Rayleigh wave inversion. J Geophys Res108(B8): 2 362, doi:10.1029/2002JB002259.CrossRefGoogle Scholar
  18. Li H Y, Su W, Wang C Y and Huang Z X (2009). Ambient noise Rayleigh wave tomography in western Sichuan and eastern Tibet. Earth Planet Sci Lett282(1–4): 201–211.CrossRefGoogle Scholar
  19. Liang C and Langston C A (2009). Three-dimensional crustal structure of eastern North America extracted from ambient noise. J Geophys Res114: B03310, doi: 10.1029/2008JB005919.Google Scholar
  20. Lin F C, Moschetti M P and Ritzwoller M H (2008). Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps. Geophys J Int173: 281–298.CrossRefGoogle Scholar
  21. Lin F C, Ritzwoller M H, Townend J, Bannister S and Savage M K (2007). Ambient noise Rayleigh wave tomography of New Zealand. Geophys J Int170: 649–666.CrossRefGoogle Scholar
  22. Moschetti M P, Ritzwoller M H and Shapiro N M (2007). Surface wave tomography of the western United States from ambient seismic noise: Rayleigh wave group velocity maps. Geochem Geophys Geosys8: Q08010, doi: 10.1029/2007GC001655.CrossRefGoogle Scholar
  23. Nishida K, Montagner J P and Kawakatsu H (2009). Global surface wave tomography using seismic hum. Science326(5949): 112.CrossRefGoogle Scholar
  24. Pollitz F F (2008). Observations and interpretation of fundamental mode Rayleigh wavefields recorded by the Transportable Array (USArray). Geophys J Int173: 189–204.CrossRefGoogle Scholar
  25. Saygin E and Kennett B L N (2010). Ambient seismic noise tomography of Australian continent. Tectonophysics481: 116–125.CrossRefGoogle Scholar
  26. Shapiro N M, Campillo M, Stehly L and Ritzwoller M H (2005). High-resolution surfacewave tomography from ambient seismic noise. Science307: 1 615–1 618.CrossRefGoogle Scholar
  27. Shapiro N M and Ritzwoller M H (2002). Monte-Carlo inversion for a global shear velocity model of the crust and upper mantle. Geophys J Int151: 88–105.CrossRefGoogle Scholar
  28. Villaseñor A, Yang Y, Ritzwoller M H and Gallart J (2007). Ambient noise surface wave tomography of the Iberian Peninsula: Implications for shallow seismic structure. Geophys Res Lett34: L11304, doi: 10.1029/2007GL030164.CrossRefGoogle Scholar
  29. Weeraratne D S, Forsyth D W, Fischer K M and Nyblade A A (2003). Evidence for an upper mantle plume beneath the Tanzanian craton from Rayleigh wave tomography. J Geophys Res108(B9), doi:10.1029/2002JB002273.Google Scholar
  30. Wielandt E (1993). Propagation and structural interpretation of non-plane waves. Geophys J Int113: 45–53.CrossRefGoogle Scholar
  31. Xue M and Allen R M (2007). The fate of the Juan de Fuca plate: Implications for a Yellowstone plume head. Earth Planet Sci Lett264: 266–276, doi: 10.1016/j.epsl.2007.09.047.CrossRefGoogle Scholar
  32. Yang Y and Forsyth D W (2006a). Regional tomographic inversion of the amplitude and phase of Rayleigh waves with 2-D sensitivity kernels. Geophys J Int166: 1 148–1 160.CrossRefGoogle Scholar
  33. Yang Y and Forsyth D W (2006b). Rayleigh wave phase velocities small-scale convection and azimuthal anisotropy beneath southern California. J Geophys Res111: B07306, doi:10.1029/2005JB004180.Google Scholar
  34. Yang Y, Zheng Y, Chen J, Zhou S, Savas C, Sandvol E, Tilmann F, Priestley K, Hearn T M, Ni J F, Brown L D and Ritzwoller M H (2010). Rayleigh wave phase velocity maps of Tibet and the surrounding regions from ambient seismic noise tomography. Geochem Geophys Geosys11(8): Q08010, doi:10.1029/2010GC003119.Google Scholar
  35. Yang Y, Ritzwoller M H, Lin F C, Moschetti M P and Shapiro N M (2008). Structure of the crust and uppermost mantle beneath the western United States revealed by ambient noise and earthquake tomography. J Geophys Res113: B12310.CrossRefGoogle Scholar
  36. Yang Y J, Ritzwoller M H, Levshin A L and Shapiro N M (2007). Ambient noise Rayleigh wave tomography across Europe. Geophys J Int168(1): 259–274.CrossRefGoogle Scholar
  37. Yao H J, Beghein C and van der Hilst R D (2008). Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-II. Crustal and uppermantle structure. Geophys J Int173(1): 205–219.CrossRefGoogle Scholar
  38. Yao H J, van der Hilst R D and de Hoop M V (2006). Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-I. Phase velocity maps. Geophys J Int166(2): 732–744.CrossRefGoogle Scholar
  39. Zandt G, Myers S C and Wallace T C (1995). Crust and mantle structure across the Basin and Range-Colorado Plateau boundary at 37°N latitude and implications for Cenozoic extensional mechanism. J Geophys Res100: 10 529–10 548, doi:10.1029/94JB03063.CrossRefGoogle Scholar
  40. Zhou Y, Dahlen F A and Nolet G (2004). Three-dimensional sensitivity kernels for surface wave observables. Geophys J Int158: 142–168, doi:10.1111/j.1365-246X.2004.02324.x.CrossRefGoogle Scholar

Copyright information

© The Seismological Society of China and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yingjie Yang
    • 1
  • Weisen Shen
    • 2
  • Michael H. Ritzwoller
    • 2
  1. 1.GEMOC ARC National Key Centre, Department of Earth and Planetary SciencesMacquarie UniversityNorth RydeAustralia
  2. 2.Department of PhysicsUniversity of Colorado at BoulderBoulderUSA

Personalised recommendations