Earthquake Science

, Volume 23, Issue 5, pp 397–402 | Cite as

Equipartition and retrieval of Green’s function



Physical and mathematical arguments are presented for equipartition as the statistical state achieved by a random field, independent of its sources, in the limit of enough scattering. The arguments are simplest for the case of thermally excited fields, but are shown to apply also, with caveats, in non-equilibrium acoustics and seismology. Practical implications are discussed.

Key words

noise correlation equipartition elastic waves information entropy 

CLC number



  1. Callen H B and Welton T A (1951). Irreversibility and generalized noise. Phys Rev83: 34–40.CrossRefGoogle Scholar
  2. Campillo M and Paul A (2003). Long-range correlations in the diffuse seismic coda. Science299: 547–549.CrossRefGoogle Scholar
  3. Economou E N (1983). Green’s Functions in Quantum Mechanics. Springer-Verlag, Berlin, 28.CrossRefGoogle Scholar
  4. Egle D M (1981). Diffuse wave fields in solid media. J Acoust Soc Am70: 476.CrossRefGoogle Scholar
  5. Froment B, Campillo M, Gouedard P, Roux P and Weaver R L (2010). Estimation of the effect of non-isotropically distributed energy on the apparent arrival time in correlations. Geophysics (in press).Google Scholar
  6. Hennino R, Trégourès N, Shapiro N M, Margerin L, Campillo M, van Tiggelen B A and Weaver R L (2001). Observation of equipartition of seismic waves. Phys Rev Lett86: 3 447–3 450.CrossRefGoogle Scholar
  7. Hu Hefei, Strybulevych A, Page J H, Skipetrov S E and van Tiggelen B A (2008). Localization of ultrasound in a three-dimensional elastic network. Nature Physics4: 945–948.CrossRefGoogle Scholar
  8. Jaynes E T (1982). On the rationale of maximum-entropy methods. Proceedings of the IEEE70: 939–952.CrossRefGoogle Scholar
  9. Kinsler L E, Frey F A, Coppens A B and Sanders J V (1982). Fundamentals of Acoustics. 3rd edition. Wiley J, New York, 333 pp.Google Scholar
  10. Kittel C and Kroemer H (1980). Thermal Physics. 2nd edition. Freeman W H, New York, 496 pp.Google Scholar
  11. Lyon R H and Maidanik G (1962). Power flow between linearly coupled oscillators. J Acoust Soc Am34: 623.CrossRefGoogle Scholar
  12. Marvin A M, Bortolani V and Nizzoli F (1980). Surface Brillouin scattering from acoustic phonons. I. General theory. J Phys C: Solid State Phys13: 299.CrossRefGoogle Scholar
  13. Morse P M and Feshbach H (1953). Methods of Theoretical Physics. McGraw-Hill, New York, 884 pp.Google Scholar
  14. Nyquist H (1928). Thermal agitation of electrical charges in conductors. Phys Rev32: 110–113.CrossRefGoogle Scholar
  15. Papanicolaou G C, Ryzhik L V and Keller J B (1996). Stability of the P-to-S energy ratio in the diffusive regime. Bull Seismol Soc Am86: 1 107–1 115.Google Scholar
  16. Paul A, Campillo M, Margerin L, Larose E and Derode A (2005). Empirical synthesis of time-asymmetrical Green functions from the correlation of coda waves. J Geophys Res110:B08302.Google Scholar
  17. Roux P and Kuperman W A (2004). Extracting coherent wave fronts from acoustic ambient noise in the ocean. J Acoust Soc Am116: 1 995–2 003.CrossRefGoogle Scholar
  18. Sánchez-Sesma F J, Alfonso Pérez-Ruiz J, Luzón F, Campillo M and Rodríguez-Castellanos A (2008). Diffuse fields in dynamic elasticity. Wave Motion 45: 641–654.CrossRefGoogle Scholar
  19. Snieder R (2004). Extracting Green’s function from the correlation of coda waves: A derivation based on stationary phase. Phys Rev E69: 046610.CrossRefGoogle Scholar
  20. Wapenaar K (2004). Retrieving the elastodynamic Green’s function of an arbitrary inhomogeneous medium by cross correlation. Phys Rev Lett93: 254301.CrossRefGoogle Scholar
  21. Weaver R (1982). On diffuse waves in solid media. J Acoust Soc Am71: 1 608–1 609.CrossRefGoogle Scholar
  22. Weaver R (1984). Diffuse waves in finite plates. J Sound Vibr94: 319–335.CrossRefGoogle Scholar
  23. Weaver R (1985). Diffuse elastic waves at a free surface. J Acoust Soc Am78: 131–136.CrossRefGoogle Scholar
  24. Weaver R L and Lobkis O I (2000). Anderson localization in coupled reverberation rooms. J Sound Vibr231(4): 1 111–1 134.CrossRefGoogle Scholar
  25. Weaver R L and Lobkis O I (2001). Ultrasonics without a source, thermal fluctuation correlations at MHz frequencies. Phys Rev Lett87: 134301.CrossRefGoogle Scholar
  26. Weaver R L and Lobkis O I (2004). Diffuse waves in open systems and the emergence of the Green’s function. J Acoust Soc Am116: 2 731–2 734.CrossRefGoogle Scholar
  27. Weaver R, Froment B and Campillo M (2009). On the correlation of non-isotropically distributed ballistic scalar diffuse waves. J Acoust Soc Am126: 1 817–1 826.CrossRefGoogle Scholar

Copyright information

© The Seismological Society of China and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of IllinoisUrbanaUSA

Personalised recommendations