Skip to main content
Log in

Review of numerical simulation on the dynamics of Qinghai-Xizang plateau

  • Review
  • Published:
Acta Seismologica Sinica

Abstract

In recent twenty years, much numerical simulation work has been done on the evolution of Qinghai-Xizang (Tibetan) plateau. In this paper some principal numerical models and results are reviewed and analyzed. The earlier plane stress or plane strain model has much discrepancy with the actual deformation of Qinghai-Xizang plateau, such as the thickening of Tibetan crust and the lateral extrusion of Tibet along strike-slip faults. The thin viscous sheet model and the thin-plate model may simulate the change of the crustal thickness and the deformation produced by gravitational force. It is suitable for studying the large-scale and long-time deformation. The influence of faults on the deformation of Tibetan plateau should be further studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avouac J P, Tapponnier P. 1993. Kinematic model of active deformation in central Asia [J]. Geophys Res Lett, 20: 895–898.

    Google Scholar 

  • Barazangi M, Ni J. 1982. Velocities and propagation characteristics of Pn and Sn beneath the Himalayan arc and Tibetan plateau: Possible evidence for underthrusting of Indian continental lithosphere beneath Tibet [J]. Geology 10: 179–185.

    Article  Google Scholar 

  • Bird P. 1979. Continental delamination and the Colorado Plateau [J]. J Geophys Res, 84(B13): 7 561–7 571.

    Google Scholar 

  • Bird P. 1989. New finite element techniques for modeling deformation histories of continents with stratified temperature-dependent rheology [J]. J Geophys Res, 94(B4): 3 967–3 990.

    Google Scholar 

  • Bird P. 1991. Lateral extrusion of lower crust from under high topography in the isostatic limit [J]. J Geophys Res, 96(B6): 10 275–10 286.

    Google Scholar 

  • Bird P. 1998. Testing hypotheses on plate-driving mechanisms with global lithosphere models including topography, thermal structure, and faults [J]. J Geophys Res, 103(B5): 10 115–10 129

    Article  Google Scholar 

  • Bird P. 1999. Thin-plate and thin-shell finite-element programs for forward dynamic modeling of plate deformation and faulting [J]. Computers & Geosciences, 25: 383–394.

    Article  Google Scholar 

  • Bird P, Baumgardner J. 1981. Steady propagation of delamination events [J]. J Geophys Res, 86(B6): 4 891–4 903.

    Google Scholar 

  • Bird P, Baumgardner J. 1984. Fault friction, regional stress, and crust-mantle coupling in southern California from finite element models [J]. J Geophys Res, 89(B3): 1 932–1 944.

    Google Scholar 

  • Bird P, Kong X. 1994. Computer simulations of California tectonics confirm very low strength of major faults [J]. Geol Soc Amer Bull, 106: 159–174.

    Article  Google Scholar 

  • Bird P, Piper K. 1980. Plane-stress finite-element models of tectonic flow in southern California [J]. Phys Earth Planet Inter, 21: 158–175.

    Article  Google Scholar 

  • Byerlee J. 1978. Friction of rocks [J]. Pure Appl Geophys, 116: 615–626.

    Article  Google Scholar 

  • Cai Y, He T, Wang R. 2000. Numerical simulation of dynamic process of the Tangshan earthquake by a new method — LDDA [J]. Pure Appl Geophys, 157: 2083–2104.

    Article  Google Scholar 

  • CAI Yong-en, LIANG Guo-ping, YIN You-quan. 2000. A dynamic analysis method LDDA for multi-elastic body system [J]. Mechanica Solida Sinica, 21(Suppl.): 182–191 (in Chinese).

    Google Scholar 

  • Chang Cheng-fa, Zheng Xi-lan. 1973. Tectonic features of the Mount Jolmo Lungma region in southern Tibet, China [J]. Scienle in China, 1: 1–12.

    Google Scholar 

  • Chemanda A I, Burg J P, Mattauer M. 2000. Evolution model of the Himalaya-Tibet system: Geopoem based on new modeling, geological and geophysical data [J]. Earth Planet Sci Lett, 174: 397–409.

    Article  Google Scholar 

  • Chemenda A I, Mattauer M, Bokun A N. 1996. Continental subduction and a mechanism for exhumation of high-pressure metamorphic rocks: New modelling and field data from Oman [J]. Earth Planet Sci Lett, 143: 173–182.

    Article  Google Scholar 

  • Chemanda A I, Mattauer M, Malavieille J, et al. 1995. A mechanism for syn-collisional rock exhumation and associated normal faulting: Results from physical modeling [J]. Earth Planet Sci Lett, 132: 225–232.

    Article  Google Scholar 

  • Chen W P, Kao H. 1996. Seismotectonics of Asia: Some recent progress [A]. In: Yin A, Harrison T M eds. The Tectonic Evolution of Asia [C]. Cambridge: Cambridge University Press, 37–62.

    Google Scholar 

  • Chen W P, Molnar P. 1981. Constraints on the seismic wave velocity structure beneath the Tibetain Plateau and their tectonic implication [J]. J Geophys Res, 86(B7): 5937–5962.

    Google Scholar 

  • Cobbold P R, Davy P. 1988. Indentation tectonics in nature and experiment, 2, Central Asia [J]. Bull Geol Inst Univ Uppsala N.S., 14: 143–162.

    Google Scholar 

  • Dewey J F, Burke K C A. 1973. Tibetan, Variscan, and Pre-Cambrian basement reactivation: Products of a continental collision [J]. J Geol, 81: 683–692.

    Article  Google Scholar 

  • Dewey J, Shackleton R M, Chang C, et al. 1988. The tectonic evolution of the Tibetan Plateau [J]. Philos Trans R Soc Lond, A, 327: 379–413.

    Article  Google Scholar 

  • England P, Houseman G. 1985. Role of lithospheric strength heterogeneities in the tectonics of Tibet and neibouring regions [J]. Nature, 315: 297–301.

    Article  Google Scholar 

  • England P, Houseman G. 1986. Finite strain calculations of continental deformation: Comparison with the India-Asia collision zone [J]. J. Geophys Res, 91(B3): 3664–3676.

    Google Scholar 

  • England P, Houseman G. 1988. The mechanics of the Tibetan Plateau [J]. Philos Trans R Soc Lond, A, 326: 301–320.

    Article  Google Scholar 

  • England P, Houseman G. 1989. Extension during continental convergence, with application to the Tibet Plateau [J]. J Geophys Res, 94(B12): 17561–17579.

    Google Scholar 

  • England P, Houseman G, Sonder L. 1985. Length scales for continental deformation in convergent, divergent, and strike-slip environments [J]. J Geophys Res, 90(B5): 3551–3557.

    Google Scholar 

  • England P, Mckenzie D. 1982. A thin viscous sheet model for continental deformation [J]. Geophys J R astr Soc, 70: 295–321.

    Google Scholar 

  • England P, Mckenzie D. 1983. Correction to: A thin viscous sheet model for continental deformation [J]. Geophys J R astr Soc, 73: 523–532.

    Google Scholar 

  • England P, Molnar P. 1997. Active deformation of Asia: From kinematics to dynamics [J]. Science, 278: 647–650.

    Article  Google Scholar 

  • Flesch L M, Haines A J, Holt W E. 2001. Dynamics of the India-Eurasia collision zone [J]. J Geophys Res, 106(B8): 16435–16460.

    Article  Google Scholar 

  • FU Rong-shan, HUANG Jian-hua, XU Yao-min, et al. 2000a. Numerical simulation of the collision between Indian and Eurasian plates and the deformation of the present Chinese continent [J]. Acta Seismologica Sinica, 13(1): 1–8.

    Google Scholar 

  • FU Rong-shan, LI Li-gang, HUANG Jian-hua, et al. 1999. The three step uplift model of the Tibet plateau [J]. Chinese J Geophys, 42(5): 610–616 (in Chinese).

    Google Scholar 

  • FU Rong-shan, XU Yao-min, HUANG Jian-hua, et al. 2000b. Numerical simulation of the compression uplift of the Qinghai-Xizang plateau [J]. Chinese J Geophys, 43(3): 346–355 (in Chinese).

    Google Scholar 

  • Goodman R E, Taylor R L, Brekke T L. 1968. A model for mechanics of jointed rock [J]. Proc Amer Soc Civ Engr, 94: 637–659.

    Google Scholar 

  • Grindlay N R, Fox P J. 1993. Lithospheric stresss associated with nontransform offsets of the Mid-Atlantic Ridge: Implications from a finite element analysis [J]. Tectonics, 12(4): 982–1003.

    Google Scholar 

  • Harrison T M, Copeland P, Kidd W S F, et al. 1992. Raising Tibet [J]. Science, 255: 1663–1670.

    Article  Google Scholar 

  • Houseman G, England P. 1986. Finite strain calculations of continental deformation: Method and general results for convergent zones [J]. J Geophys Res, 9(B3): 3651–3663.

    Google Scholar 

  • Houseman G, England P. 1993. Crustal thickening versus lateral expulsion in the Indian-Asian continental collision [J]. J Geophys Res, 98(B7): 12233–12249.

    Google Scholar 

  • Houseman G, England P. 1996. A lithospheric-thickening model for the Indo-Asian collision [A]. In: Yin A, Harrison T M eds. The Tectonic Evolution of Asia [C]. Cambridge: Cambridge University Press, 3–17.

    Google Scholar 

  • Houseman G, Mckenzie D P, Molnar P. 1981. Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts [J]. Journal of Geophysical Research, 86(B7): 6115–6132.

    Google Scholar 

  • Kay R W, Kay S M. 1993. Delamination and delamination magmatism [J]. Tectonophysics, 219: 177–189

    Article  Google Scholar 

  • Kirby S I, Kronenberg A K. 1987. Rheology of the lithosphere: Selected topics [J]. Rev Geophys, 25: 1219–1244.

    Google Scholar 

  • Kong X, Bird P. 1995. Shells: A thin-shell program for modeling neotectonics of regional or global lithosphere with faults [J]. J Geophys Res, 100(B11): 22129–22131.

    Article  Google Scholar 

  • Kong X, Bird P. 1996. Neotectonics of Asia: Thin-shell finite-element models with faults [A]. In: Yin A, Harrison T M eds. The Tectonic Evolution of Asia [C]. Cambridge: Cambridge University Press, 18–34.

    Google Scholar 

  • Kosarev G, Kind R, Sobolev S V, et al. 1999. Seismic evidence for a detached Indian lithospheric mantle beneath Tibet [J]. Science, 283: 1306–1309.

    Article  Google Scholar 

  • Le Pichon X, Fournier M, Jolivet L. 1992. Kinematics, topograph, shortening and extrusion in the India-Eurasia collision [J]. Tectonics, 11: 1085–1098.

    Google Scholar 

  • LIANG Guo-ping, HE Jin. 1993. The non comforming domain decomposition method for elliptic problems with Lagrangian multipliers [J]. Chinese J Num Math & Appl, 15: 8–19.

    Google Scholar 

  • LIU Jin-zhao, LU Shi-kuo, XU He-hua, et al. 2002. Three-dimensional viscoelastic LDDA method and its application to geoscience [J]. Acta Seismologica Sinica, 15(3): 341–348.

    Google Scholar 

  • LI Ting-dong. 1995. The uplifting process and mechanism of the Qinghai-Tibet plateau [J]. Acta Geoscientia Sinica, (1): 1–9 (in Chinese).

  • Masek J G, Tsacks B L, Fielding E J, et al. 1994. Rift flank uplift in Tibet: Evidence for a viscous lower crust [J]. Tectonics, 13: 659–667.

    Article  Google Scholar 

  • McNamara D E, Owens T J, Silver P G, et al. 1994. Shear wave anisotropy beneath the Tibetan Plateau [J]. J Geophys Res, 99(B7): 13655–13665.

    Article  Google Scholar 

  • Meissner R, Mooney W. 1998. Weakness of the lower continental crust: A condition for delamination, uplift, and escape [J]. Tectonophysics, 296: 47–60.

    Article  Google Scholar 

  • Molnar P. 1988. A review of geophysical constraints on the deep structure of the Tibetan Plateau, the Himalaya and the Karakoram, and their tectonic implications [J]. Philos Trans R Soc Lond A, 326: 33–88.

    Article  Google Scholar 

  • Molnar P, Deng Q. 1984. Faulting associated with large earthquake and the average rate of deformation in central and eastern Asia [J]. J Geophys Res, 89(B7): 6203–6227.

    Google Scholar 

  • Molnar P, Tapponnier P. 1975. Cenozoic tectonics of Asia: Effects of a continental collision [J]. Science, 189: 419–426.

    Article  Google Scholar 

  • Molnar P, Tapponnier P. 1978. Active tectonics of Tibet [J]. J Geophys Res, 83(B11): 5361–5375.

    Google Scholar 

  • Molnar P, Tapponnier P. 1981. A possible dependence of tectonic strength on the age of the crust in Asia [J]. Earth Planet Sci Lett, 52: 107–114.

    Article  Google Scholar 

  • Peltzer G, Saucier F. 1996. Present-day kinematics of Asia derived from geologic fault rates [J]. J Geophys Res, 101(B12): 27943–27956.

    Article  Google Scholar 

  • Peltzer G, Tapponnier P. 1988. Formation and evolution of strike-slip faults, rifts, and basins during the Indian-Asia collision: An experimental approach [J]. J Geophys Res, 93: 15085–15117.

    Google Scholar 

  • Powell C M, Conaghan P G. 1973. Plate tectonics and the Himalayas [J]. Earth Planet Sci Lett, 20: 1–12.

    Article  Google Scholar 

  • Ranalli G. 1997. Rheology of the lithosphere in space and time [A]. In: Burg J P & Ford M eds. Orogeny Through Time [C]. Geological Society Special Publication, (121): 19–37.

  • Ranalli G, Murphy D C. 1987. Rheological stratification of the lithosphere [J]. Geophysics, 132: 281–295.

    Google Scholar 

  • Richardson R M. 1978. Finite element modeling of stress in the Nazca plate: Driving forces and plate boundary earthquake [J]. Tectonophysics, 50: 223–248.

    Article  Google Scholar 

  • Rchardson R M, Cox B L. 1984. Evolution of oceanic lithosphere: a driving force study of the Nazca plate [J]. Journal of Geophysical Research, 89(B12): 10043–10052.

    Google Scholar 

  • Richardson R M, Solomon S C. 1979. Tectonic stress in the plates [J]. Rev Geophys Space Phys, 17(5): 981–1019.

    Google Scholar 

  • Royden L. 1996. Coupling and decoupling of crust and mantle in convergent orogens: Implications for strain partitioning in the crust [J]. J Geophys Res, 101 (B12): 17679–17705.

    Article  Google Scholar 

  • Royden L H, Burchfiel B C, King R W, et al. 1997. Surface deformation and lower crustal flow in eastern Tibet [J]. Science, 276: 788–790.

    Article  Google Scholar 

  • Shen F, Royden L H, Burchfiel B C. 2001. Large-scale crustal deformation of the Tibetan Plateau [J]. J Geophys Res, 106(B4): 6793–6816.

    Article  Google Scholar 

  • SHEN Xian-jie. 1994. A kinematical-uplift model for the Himalayan-Tibetan region [J]. Acta Seismologica Sinica, 7(3): 415–425.

    Google Scholar 

  • SHEN Xian-jie, ZHU Yuan-qing, SHI Yao-lin. 1992. Research on the model of heat flow and structural thermal evolution of the Qinghai-Xizang plateau [J]. Science in China (Series B), (3): 311–321 (in Chinese)

  • Shi G H, Goodman R E. 1985. Two-dimensional discontinuous deformation analysis [J]. Int J Numer Anal Meth Geomech, 9: 541–556.

    Article  Google Scholar 

  • Solomon S C, Richardson R M, Bergman E A. 1980. Tectonic stress: Models and magnitudes [J]. J Geophys Res, 85(B11): 6086–6092.

    Google Scholar 

  • Sonder L J, England P. 1986. Vertical averages of rheology of the continental lithosphere: Relation to this sheet parameters [J]. Earth Planet Sci Lett, 77: 81–90.

    Article  Google Scholar 

  • Sonder L J, England P C, Houseman G A. 1986. Continuum calculation of continental deformation in transcurrent environments [J]. J Geophys Res, 91(B5): 4797–4810.

    Google Scholar 

  • SONG Hui-zheng, HUANG Li-ren, HUA Xiang-wen, et al. 1990. Comprehensive Research on the Ground Stress Field [M]. Beijing: Press of the Oil industry, 61–94 (in Chinese).

    Google Scholar 

  • Tapponnier P, Molnar P. 1976. Slip-line field theory and large scale continental tectonics [J]. Nature, 264: 319–324.

    Article  Google Scholar 

  • Tapponnier P, Peltzer G, Dain A Y L, et al. 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine [J]. Geology, 10: 611–616.

    Article  Google Scholar 

  • Vilotte J P, Daignieres M, Madariaga R. 1982. Numerical modeling of intraplate deformation: Simple mechanical models of continental collision [J]. J Geophys Res, 87(B13): 10709–10728.

    Google Scholar 

  • Vilotte J P, Daignieres M, Madariaga R, et al. 1984. The role of a heterogeneous inclusion during continental collision [J]. Phys Earth Planet Inter, 36: 236–259.

    Article  Google Scholar 

  • Vilotte J P, Madariaga R, Daignieres M, et al. 1986. Numerical study of continental collision: Influence of buoyancy forces and initial stiff inclusion [J]. Geophys J R astr Soc, 84: 279–310.

    Google Scholar 

  • WAN Tian-feng. 1988. Paleotectonic Stress Field [M]. Beijing: Seismological Press, 125–128 (in Chinese).

    Google Scholar 

  • Wang C Y, Cai Y, Jones D L. 1995. Predicting the areas of crustal faulting in San Francisco Bay region [J]. Geology, 23: 771–774.

    Article  Google Scholar 

  • WANG Su-yun, CHEN Pei-shan. 1980. A numerical simulation of the present tectonic stress field in China and its vicinity [J]. Chinese J Geophys, 23(1): 35–45 (in Chinese).

    Google Scholar 

  • WANG Su-yun, XU Zhong-huai, YU Yan-xiang, et al. 1996. Inversion for the plate driving forces acting at the boundaries of China and its surroundings [J]. Chinese J Geophys, 39(6): 764–771 (in Chinese).

    Google Scholar 

  • Westaway R, England D. 1995. Crustal volume balance during the India-Eurasia collision and altitude of the Tibetan plateau: A working hypothesis [J]. J Geophys Res, 100(B8): 15 173–15 192.

    Article  Google Scholar 

  • WU Yun, SHUAI Ping, ZHOU Shuo-yu, et al. 1999. Current crustal motion and deformation in the Chinese mainland and its surrounding area determined from GPS data [J]. Acta Seismologica Sinica, 12(5): 596–606.

    Google Scholar 

  • XIAO Xu-chang, WANG Jun. 1998. Brief reviews on the tectonic evolution of the Qinghai-Tibet plateau [J]. Geol Rev, 44(4): 373–381 (in Chinese).

    Google Scholar 

  • XIONG Xiong, XU Hou-ze, FU Rong-shan. 1998. Influence of thickening and convective removal of the continental lithosphere upon the uplift of Tibetan plateau [J]. Crustal Deformation and Earthquake, 18(3): 1–7 (in Chinese)

    Google Scholar 

  • Yin A. 2000. Mode of Cenozoic east-west extension in Tibet suggesting a common origin of rifts in Asia during the Indo-Asian collision [J]. J Geophys Res, 105(B9): 21 745–21 759.

    Article  Google Scholar 

  • ZANG Shao-xian, WU Zhong-liang, NING Jie-yuan. 1992. The interaction among Chinese surrounding plates and its effect on the stress field of China [J]. Chinese J Geophys, 35(4): 428–440 (in Chinese).

    Google Scholar 

  • ZENG Rong-sheng, DING Zhi-feng, WU Qing-ju 1994. A review of the lithospheric structures in Tibetan plateau and constraints for dynamics [J]. Chinese J Geophys, 37(Suppl.): 99–116 (in Chinese).

    Google Scholar 

  • ZHANG Dong-ning, XU Zhong-huai. 1997. Numerical simulation of the graben forming process in southern Xizang [J]. Earthquake Research in China, 13(4): 349–357 (in Chinese).

    Google Scholar 

  • ZHANG Dong-ning, XU Zhong-huai. 1999. Boundary conditions of the dynamic numerical model for the Chinese mainland lithosphere [J]. Acta Seismologica Sinica, 12(2): 148–154.

    Google Scholar 

  • Zhao W L, Morgan W J. 1985. Uplift of Tibetan plateau [J]. Tectonics, 4: 359–369.

    Google Scholar 

  • Zhao W L, Morgan W J. 1987. Injection of Indian crust into Tibetan lower crust: A two-dimensional finite element model study [J]. Tectonics, 6: 489–504.

    Article  Google Scholar 

  • Zhong S, Gurnis M. 1995. Mantle convection with plates and mobile, faulted plate margins [J]. Science, 267: 838–843.

    Article  Google Scholar 

  • ZHONG Da-lai, DING Lin. 1996. Discussion about the uplift of Tibetan plateau and its mechanism [J]. Science in China (Series D), 26: 289–295 (in Chinese).

    Google Scholar 

  • ZHOU Shuo-yu, WU Yun, SHI Shun-ying, et al. 2001. Integrated research on current crustal movement and earthquake dynamics in marginal sea, southeast of China continent [J]. Crustal Deformation and Earthquake, 21(1): 1–14 (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Foundation item: NSFC (40234042) and the Major State Basic Research Development Program of China (G1999075511).

About this article

Cite this article

Lu, Sk., Cai, Ye. Review of numerical simulation on the dynamics of Qinghai-Xizang plateau. Acta Seimol. Sin. 17, 604–617 (2004). https://doi.org/10.1007/s11589-004-0044-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11589-004-0044-y

Key words

CLC number

Navigation