Advertisement

Propagation of non-planar weak and strong shocks in a non-ideal relaxing gas

  • Sarswati Shah
  • Randheer SinghEmail author
Article
  • 18 Downloads

Abstract

In this article, the kinematics of one-dimensional motion have been applied to construct evolution equations for non-planar weak and strong shocks propagating into a non-ideal relaxing gas. The approximate value of exponent of shock velocity, at the instant of shock collapse, obtained from systematic approximation method is compared with those obtained from characteristic rule and Guderley’s scheme. Computation of exponent is carried out for different values of van der Waals excluded volume. Effects of non-ideal and relaxation parameters on the wave evolution, governed by the evolution equations, are analyzed.

Keywords

Weak shocks Strong shocks Non-ideal relaxing gas Induced discontinuity Guderley’s method 

Mathematics Subject Classification

Primary 35L45 58J45 35L67 Secondary 35Q35 82B40 74J30 

Notes

Acknowledgements

The first author is highly thankful to CSIR India (Ref. No. 09/045(1444)/2016-EMR-I) for fellowship. Research and Development grant from University of Delhi, Delhi (Ref. No. RC/2015/9677) is gratefully acknowledged by the second author.

References

  1. 1.
    Sharma, V.D.: Quasilinear Hyperbolic Systems, Compressible Flows, and Waves. Chapman and Hall/CRC, Boca Raton (2010)CrossRefGoogle Scholar
  2. 2.
    Scott, W.A., Johannesen, N.H.: Spherical nonlinear wave propagation in a vibrationally relaxing gas. Proc. R. Soc. Lond. A 382, 103–134 (1982)CrossRefGoogle Scholar
  3. 3.
    Jena, J., Sharma, V.D.: Interaction of a characteristic shock with a weak discontinuity in a relaxing gas. J. Eng. Math. 60, 43–53 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Singh, R., Jena, J.: One dimensional steepening of waves in non-ideal relaxing gas. Int. J. Non Linear Mech. 77, 158–161 (2015)CrossRefGoogle Scholar
  5. 5.
    Madhumita, G., Sharma, V.D.: Imploding cylindrical and spherical shock waves in a non-ideal medium. J. Hyperbolic Diff. Equ. 1, 521–530 (2004)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Clarke, J.F., McChesney, M.: Dynamics of Relaxing Gases. Butterworth, London (1976)Google Scholar
  7. 7.
    Sharma, V.D., Venkatraman, R.: Evolution of weak shocks in one dimensional planar and non-planar gas dynamics flows. Int. J. Nonlinear Mech. 47, 918–926 (2012)CrossRefGoogle Scholar
  8. 8.
    Quintanilla, R., Straughan, B.: A note on the discontinuity waves in type III thermoelasticity. Proc. R. Soc. Lond. A 460, 1169–1175 (2004)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Sharma, V.D., Radha, C.: On one dimensional planar and non-planar shock waves in a relaxing gas. Phys. Fluids 6, 2177–2190 (1994)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Zhao, N., Mentrelli, A., Ruggeri, T., Sugiyama, M.: Admissible shock waves and shock induced phase transitions in a van der Waals fluid. Phys. Fluids 23, 086101 (2011)CrossRefGoogle Scholar
  11. 11.
    Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974)zbMATHGoogle Scholar
  12. 12.
    Anile, A.M., Hunter, J.K., Pantano, P., Russo, G.: Ray Method for Non-linear Waves in Fluids and Plasmas. Longman, New York (1993)zbMATHGoogle Scholar
  13. 13.
    Zheng, Y.: Systems of Conservation Laws. Birkhauser, Boston (2001)CrossRefGoogle Scholar
  14. 14.
    Straughan, B.: Heat Waves, Applied Mathematical Sciences, vol. 177. Springer, New York (2011)zbMATHGoogle Scholar
  15. 15.
    Mentrelli, A., Ruggeri, T.: The Riemann problem for a hyperbolic model of incompressible fluids. Int. J. Nonlinear Mech. 51, 87–96 (2013)CrossRefGoogle Scholar
  16. 16.
    Mentrelli, A., Ruggeri, T.: The propagation of shock waves in incompressible fluids: the case of freshwater. Acta Appl. Math. 132, 427–437 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Conforto, F., Mentrelli, A., Ruggeri, T.: Shock structure and multiple sub-shocks in binary mixures of Eulerian fluids. Ric. Mat. 66, 221–231 (2016)CrossRefGoogle Scholar
  18. 18.
    Pandey, M., Sharma, V.D.: Interaction of a characteristic shock with a weak discontinuity in a non-ideal gas. Wave Motion 44, 346–354 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Truesdell, C., Toupin, R.A.: The Classical Field Theories, Handbuch der physik. Springer, Berlin (1960)Google Scholar
  20. 20.
    Guderley, G.: Starke kugelige und zylindrische Verdichtungsstosse in der Nahe des Kugelmittelunktes bzw der Zylinderachse. Luftfahrtforschung 19, 302–312 (1942)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Arora, R., Siddiqui, M.J., Singh, V.P.: Similarity method for imploding strong shocks in a non-ideal relaxing gas. Int. J. Nonlinear Mech. 57, 1–9 (2013) CrossRefGoogle Scholar

Copyright information

© Università degli Studi di Napoli "Federico II" 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of DelhiDelhiIndia

Personalised recommendations