Ricerche di Matematica

, Volume 68, Issue 2, pp 615–627 | Cite as

On modulated multi-component NLS systems: Ermakov invariants and integrable symmetry reduction

  • Colin RogersEmail author


A multi-component, modulated NLS system is presented which admits symmetry reduction to a nonlinear subsystem that is shown to be integrable by application of its admitted Ermakov invariants and a novel class of reciprocal transformations.


Nonlinear Schrödinger system Modulation Ermakov invariant Reciprocal transformation 

Mathematics Subject Classification




  1. 1.
    Belmonte-Beita, J., Pérez-Garcia, V.M., Vekslechik, V.: Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities. Phys. Rev. Lett. 98, 064102 (2007)Google Scholar
  2. 2.
    Belmonte-Beita, J., Pérez-Garcia, V.M., Vekslechik, V., Konotop, V.V.: Localized nonlinear waves in systems with time and space-modulated nonlinearities. Phys. Rev. Lett. 100, 164102 (2008)Google Scholar
  3. 3.
    Tang, X.Y., Shukla, P.K.: Solution of the one-dimensional spatially inhomogeneous cubic-quintic nonlinear Sch\(\ddot{\text{r}}\)odinger equation with external potential. Phys. Rev. A 76, 013612 (2007)Google Scholar
  4. 4.
    Zhang, J.F., Li, Y.S., Meng, J., Wo, L., Malomed, B.A.: Matter-wave solitons and finite-amplitude Bloch waves in optical lattices with a spatially modulated nonlinearity. Phys. Rev. A 82, 033614 (2010)Google Scholar
  5. 5.
    Zhong, W.P., Belić, M.R., Malomed, B.A., Huang, T.: Solitary waves in the nonlinear Schrödinger equation with Hermite-Gaussian modulation of the local nonlinearity. Phys. Rev. E 84, 046611 (2011)Google Scholar
  6. 6.
    Zhong, W.P., Belić, M.R., Huang, T.: Solitary waves in the nonlinear Schrödinger equation with spatially modulated Bessel nonlinearity. J. Opt. Soc. Am. B 30, 1276–1283 (2013)Google Scholar
  7. 7.
    Malomed, B.A.: Soliton Management in Periodic Systems. Springer, New York (2006)zbMATHGoogle Scholar
  8. 8.
    Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. London Mathematical Society Lecture Note Series, 149. Cambridge University Press, Cambridge (1991)Google Scholar
  9. 9.
    Rogers, C., Shadwick, W.F.: Bäcklund Transformations and Their Applications. Academic Press, New York (1982)zbMATHGoogle Scholar
  10. 10.
    Rogers, C., Schief, W.K.: Bäcklund and Darboux Transformations. Geometry and Modern Applications in Soliton Theory. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)Google Scholar
  11. 11.
    Rogers, C., Saccomandi, G., Vergori, L.: Ermakov-modulated nonlinear Schrödinger models. Integrable reduction. J. Nonlinear Math. Phys. 23, 108–126 (2016)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Rogers, C., Chow, K.: On modulated NLS-Ermakov systems. J. Nonlinear Math. Phys. 24(Supplement 1), 61–74 (2017)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Ray, J.R.: Nonlinear superposition law for generalised Ermakov systems. Phys. Lett. A 78, 4–6 (1980)MathSciNetGoogle Scholar
  14. 14.
    Reid, J.L., Ray, J.R.: Ermakov systems, nonlinear superposition and solution of nonlinear equations of motion. J. Math. Phys. 21, 1583–1587 (1980)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Athorne, C., Rogers, C., Ramgulam, U., Osbaldestin, A.: On linearisation of the Ermakov system. Phys. Lett. A 143A, 207–212 (1990)Google Scholar
  16. 16.
    Ermakov, V.P.: Second-order differential equations: conditions of complete integrability. Univ. Izy. Kiev 20, 1–25 (1880)Google Scholar
  17. 17.
    Wagner, W.G., Haus, H.A., Marburger, J.H.: Large scale self-trapping of optical beams in the paraxial ray approximation. Phys. Rev. 175, 256–266 (1968)Google Scholar
  18. 18.
    Guiliano, C.R., Marburger, J.H., Yariv, A.: Enhancement of self-focussing threshold in sapphire with elliptical beams. Appl. Phys. Lett. 21, 58–60 (1972)Google Scholar
  19. 19.
    Cornolti, F., Lucchesi, M., Zambon, B.: Elliptic Gaussian beam self-focussing in nonlinear media. Opt. Commun. 75, 129–135 (1990)Google Scholar
  20. 20.
    Goncharenko, A.M., Logvin, Y.A., Samson, A.M., Shapovalov, P.S., Turovets, S.I.: Ermakov Hamiltonian systems in nonlinear optics of elliptic Gaussian beams. Phys. Lett. A 160, 138–142 (1991)MathSciNetGoogle Scholar
  21. 21.
    Goncharenko, A.M., Logvin, Y.A., Samson, A.M., Shapovalov, P.S.: Rotating elliptical Gaussian beams in nonlinear media. Opt. Commun. 81, 225–230 (1991)Google Scholar
  22. 22.
    Rogers, C., Malomed, B., Chow, K., An, H.: Ermakov-Ray-Reid systems in nonlinear optics. J. Phys. A: Math. Theor. 43, 455214 (2010)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Rogers, C., Malomed, B., An, H.: Ermakov-Ray-Reid reductions of variational approximations in nonlinear optics. Stud. Appl. Math. 129, 389–413 (2012)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Rogers, C.: Elliptic warm-core theory: the pulsrodon. Phys. Lett. A 138, 267–273 (1989)MathSciNetGoogle Scholar
  25. 25.
    Rogers, C., An, H.: Ermakov-Ray-Reid systems in \(2+1\)-dimensional rotating shallow water theory. Stud. Appl. Math. 125, 275–299 (2010)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Rogers, C., Schief, W.K.: On the integrability of a Hamiltonian reduction of a \(2+1\)-dimensional non-isothermal rotating gas cloud system. Nonlinearity 24, 3165–3178 (2011)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Rogers, C., Schief, W.K.: The pulsrodon in \(2+1\)-dimensional magneto-gasdynamics. Hamiltonian structure and integrability. J. Math. Phys.52, 083701 (2011)Google Scholar
  28. 28.
    Schief, W.K., An, H., Rogers, C.: Universal and integrable aspects of an elliptic vortex representation in \(2+1\)-dimensional magneto-gasdynamics. Stud. Appl. Math. 130, 49–79 (2013)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Rogers, C., Schief, W.K.: Multi-component Ermakov systems: structure and linearisation. J. Math. Anal. Appl. 198, 194–220 (1996)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Rogers, C.: Multi-component Ermakov and non-autonomous many-body system connections. Ricerche di Matematica 67, 803–815 (2018)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Christiansen, D.L., Eilbeck, J.C., Enolski, V.Z., Kostov, N.A.: Quasi-periodic solutions of the coupled nonlinear Schrödinger equations. Proc. R. Soc. Lond. A 451, 685–700 (1995)zbMATHGoogle Scholar
  32. 32.
    Rogers, C., Ramgulam, U.: A nonlinear superposition principle and Lie group invariance: application in rotating shallow water theory. Int. J. Nonlinear Mech. 24, 229–236 (1989)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Rogers, C., Schief, W.K., Winternitz, P.: Lie theoretical generalisation and discretisation of the Pinney equation. J. Math. Anal. Appl. 216, 246–264 (1997)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Rogers, C.: A novel Ermakov-Painlevé II system: \(\text{ N }+1\)-dimensional coupled NLS and elastodynamic reductions. Stud. Appl. Math. 133, 214–231 (2014)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Lee, J.H., Pashaev, O.K., Rogers, C., Schief, W.K.: The resonant nonlinear Schrödinger equation in cold plasma physics. Application of Bäcklund-Darboux transformations and superposition principles. J. Plasma Phys. 73, 257–272 (2007)Google Scholar
  36. 36.
    Pashaev, O.K., Lee, J.H., Rogers, C.: Soliton resonances in a generalised nonlinear Schrödinger equation. J. Phys. A: Math. Theor. 41, 452001–452009 (2008)zbMATHGoogle Scholar
  37. 37.
    Rogers, C., Clarkson, P.A.: Ermakov-Painlevé II symmetry reduction in cold plasma physics. Application of a B\(\ddot{\text{ c }}\)klund transformation. J. Nonlinear Math. Phys. 25, 247–261 (2018)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Rogers, C., Clarkson, P.A.: Ermakov-Painlevé II symmetry reduction of a Korteweg capillarity system. Symmetry Integr. Geom. Methods Appl. 13, 018 (2017)zbMATHGoogle Scholar
  39. 39.
    Rogers, C., Schief, W.K.: On Ermakov-Painlevé II systems. Integrable reduction. Meccanica 51, 2967–2974 (2016)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Bass, L.K., Nimmo, J.J.C., Rogers, C., Schief, W.K.: Electrical structures of interfaces. A Painlevé II model. Proc. Roy. Soc. Lond. A 466, 2117–2136 (2010)zbMATHGoogle Scholar
  41. 41.
    Schief, W.K.: On a \(2+1\)-dimensional integrable Ernst-type equation. Proc. Roy. Soc. Lond. A 446, 381–398 (1994)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Konopelchenko, B.G., Rogers, C.: On \((2+1)\)-dimensional nonlinear systems of Loewner-type. Phys. Lett. A 158, 391–397 (1991)MathSciNetGoogle Scholar
  43. 43.
    Konopelchenko, B.G., Rogers, C.: On generalized Loewner systems: novel integrable equations in \(2+1\)-dimensions. J. Math. Phys. A 34, 214–242 (1993)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Schief, W.K., Rogers, C., Bassom, A.: Ermakov systems with arbitrary order and dimension. Structure and linearisation. J. Phys. A: Math. Gen. 29, 903–911 (1996)zbMATHGoogle Scholar
  45. 45.
    Milne, A.E., Clarkson, P.A.: Rational solutions and Bäcklund transformations for the third Painlevé equation. In: Clarkson, P.A. (eds.) Applications of Analytic and Geometric Methods to Nonlinear Differential Equations. NATO ASI Series: Mathematical and Physical Sciences, vol. 413, pp 341–352. Kluwer Academic Publishers, Dordrecht (1993)zbMATHGoogle Scholar
  46. 46.
    Rogers, C.: Hybrid Ermakov-Painlevé IV systems. J. Nonlinear Math. Phys. 21, 628–642 (2014)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Rogers, C., Bassom, A.P., Clarkson, P.A.: Ermakov-Painlevé IV systems: canonical reduction. J. Math. Anal. Appl. 462, 1225–1241 (2018)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Karal, F.C., Keller, J.B.: Elastic wave propagation in homogeneous and inhomogeneous media. J. Acoust. Soc. Amer. 31, 694–705 (1959)MathSciNetGoogle Scholar
  49. 49.
    Barclay, D.W., Moodie, T.B., Rogers, C.: Cylindrical impact waves in inhomogeneous Maxwellian visco-elastic media. Acta Mechanica 29, 93–117 (1978)zbMATHGoogle Scholar
  50. 50.
    Clements, D.L., Atkinson, C., Rogers, C.: Anti-plane crack problems for an inhomogeneous elastic material. Acta Mechanica 29, 199–211 (1978)zbMATHGoogle Scholar
  51. 51.
    Rogers, C., Clements, D.L.: Bergman’s integral operator method in inhomogeneous elasticity. Quart. Appl. Math. 36, 315–321 (1978)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Clements, D.L., Rogers, C.: A boundary integral equation for the solution of a class of problems in anisentropic, inhomogeneous thermostatics and elastostatics. Quart. Appl. Math. 41, 99–105 (1983)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Rogers, C.: Reciprocal relations in non-steady one-dimensional gasdynamics. Zeit. Angew. Math. Phys. 19, 58–63 (1968)zbMATHGoogle Scholar
  54. 54.
    Rogers, C.: Invariant transformations in non-steady gasdynamics and magnetogasdynamics. Zeit. Angew. Math. Phys. 20, 370–382 (1969)zbMATHGoogle Scholar
  55. 55.
    Rogers, C.: Application of a reciprocal transformation to a two-phase Stefan problem. J. Phys. A: Math. Gen. 18, L105–L109 (1985)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Rogers, C.: On a class of reciprocal Stefan moving boundary problems Zeit. Angew. Math. Phys. 66, 2069–2079 (2015)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Fokas, A.S., Rogers, C., Schief, W.K.: Evolution of methacrylate distribution during wood saturation. A nonlinear moving boundary problem. Appl. Math. Lett. 18, 321–328 (2005)MathSciNetzbMATHGoogle Scholar
  58. 58.
    Rogers, C., Ruggeri, T.: A reciprocal Bäcklund transformation: application to a nonlinear hyperbolic model in heat conduction. Lett. Il. Nuovo Cimento 44, 289–296 (1985)Google Scholar
  59. 59.
    Donato, A., Ramgulam, U., Rogers, C.: The \(3+1\)-dimensional Monge-Ampère equation in discontinuity wave theory: application of a reciprocal transformation. Meccanica 27, 257–262 (1992)zbMATHGoogle Scholar
  60. 60.
    Rogers, C., Stallybrass, M.P., Clements, D.L.: On two phase filtration under gravity with boundary infiltration: application of a Bäcklund transformation. J. Nonlinear Anal. Theory Methods Appl. 7, 785–799 (1983)zbMATHGoogle Scholar
  61. 61.
    Rogers, C., Schief, W.K.: The classical Korteweg capillarity system: geometry and invariant transformations. J. Phys. A: Math. Theor.47, 345201 (2014)MathSciNetzbMATHGoogle Scholar
  62. 62.
    Rogers, C., Malomed, B.: On Madelung systems in nonlinear optics. A reciprocal invariance. J. Math. Phys. 59, 051506 (2018)MathSciNetzbMATHGoogle Scholar
  63. 63.
    Konopelchenko, B.G., Rogers, C.: Bäcklund and Reciprocal Transformations: Gauge Connections in Nonlinear Equations in the Applied Sciences, pp. 317–362. Academic Press, New York (1991)Google Scholar
  64. 64.
    Oevel, W., Rogers, C.: Gauge transformations and reciprocal links in \(2+1\)-dimensions. Rev. Math. Phys. 5, 299–330 (1993)MathSciNetzbMATHGoogle Scholar
  65. 65.
    Rogers, C.: The Harry Dym equation in \(2+1\)-dimensions: a reciprocal link with the Kadomtsev-Petriastivili equation. Phys. Lett. A 120, 15–18 (1987)MathSciNetGoogle Scholar
  66. 66.
    Rogers, C., Nucci, M.C.: On reciprocal Bäcklund transformations and the Korteweg-de Vries hierarchy. Phys. Scr. 33, 289–292 (1986)zbMATHGoogle Scholar
  67. 67.
    Rogers, C., Carillo, S.: On reciprocal properties of the Caudrey-Dodd-Gibbon and Kaup-Kuperschmidt hierarchies. Phys. Scr. 36, 865–869 (1987)zbMATHGoogle Scholar
  68. 68.
    Rogers, C., Wong, P.: On reciprocal Bäcklund transformations of inverse scattering schemes. Phys. Scr. 30, 10–14 (1983)zbMATHGoogle Scholar
  69. 69.
    Carillo, S., Zullo, F.: The Gross-Pitaevskii equation: Bäcklund transformations and admitted solutions. arXiv preprint: arXiv:1803.09228 (2018)
  70. 70.
    Carillo, S., Zullo, F.: Ermakov-Pinney and Emden-Fowler equations. New solutions from novel Bäcklund transformations. Theor. Math. Phys.196 1268 (2018)MathSciNetzbMATHGoogle Scholar

Copyright information

© Università degli Studi di Napoli "Federico II" 2018

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsThe University of New South WalesSydneyAustralia

Personalised recommendations