Advertisement

Ricerche di Matematica

, Volume 68, Issue 2, pp 581–595 | Cite as

Double-diffusive Soret convection phenomenon in porous media: effect of Vadasz inertia term

  • F. CaponeEmail author
  • R. De Luca
  • M. Vitiello
Article
  • 36 Downloads

Abstract

The onset of double-diffusive convection in horizontal porous layers for the thermo-diffusive Soret phenomenon in the case of a generalized Darcy model including inertia term is investigated. Via a linearization principle recently introduced in Rionero (Atti Accad Naz Lincei Rend Cl Sci Fis Mat Natur 28:21–47, 2017) the coincidence between linear and nonlinear (global) stability thresholds of the thermo-solutal conduction solution, is proved. Necessary and sufficient conditions guaranteeing the onset of steady or oscillatory convection in a closed algebraic form are obtained.

Keywords

Steady convection Hopf convection Vadasz Soret Stability Porous media 

Mathematics Subject Classification

76E06 76S05 35B35 

Notes

Acknowledgements

This work has been performed under the auspices of the G.N.F.M. of INdAM. One of the authors (R. De Luca) acknowledges Progetto Giovani GNFM 2017 “Analisi dei sistemi biologici complessi”

References

  1. 1.
    Capone, F., De Luca, R.: Porous MHD convection: effect of Vadasz inertia term. Transp. Porous Media 118, 519–536 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Capone, F., Rionero, S.: Porous MHD convection: stabilizing effect of magnetic field and bifurcation analysis. Ricerche Mat. 65, 163–186 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Deepika, N.: Linear and nonlinear stability of double-diffusive convection with the Soret effect. Transp. Porous Media 121, 93–108 (2018)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Dover, New York (1981)zbMATHGoogle Scholar
  5. 5.
    Joseph, D.D.: Stability of Fluid Motions I, II Volumes 27–28 of Springer Tracts in Natural Philosophy. Springer, New York (1997)Google Scholar
  6. 6.
    Merkin, D.R.: Introduction to the Theory of Stability, Texts in Applied Mathematics, vol. 24. Springer, New York (1997)Google Scholar
  7. 7.
    Nield, D.A., Bejan, A.: Convection in Porous Media, 5th edn. Springer, Berlin (2017)CrossRefGoogle Scholar
  8. 8.
    Rionero, S.: Multicomponent diffusive-convective fluid motions in porous layers: ultimately boundedness, absence of subcritical instabilities and global nonlinear stability for any number of salts. Phys. Fluid 25, 054104 (2013)CrossRefGoogle Scholar
  9. 9.
    Rionero, S.: Soret effects on the onset of convection in rotating porous layers via the “auxiliary system method”. Ricerche Mat. 62(2), 183–208 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Rionero, S.: Heat and mass transfer by convection in multicomponent Navier–Stokes mixture: absence of subcritical instabilities and global nonlinear stability via the auxiliary system method. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei 25(4), 1–44 (2014)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Rionero, S.: Dynamic of thermo-MHD flows via a new approach. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei 28, 21–47 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Straughan, B.: The Energy Method, Stability and Nonlinear Convection. Applied Mathematical Sciences, vol. 91. Springer, New York (2004)CrossRefGoogle Scholar
  13. 13.
    Straughan, B.: Stability and Wave Motion in Porous Media, vol. 165. Springer, New York (2008)zbMATHGoogle Scholar
  14. 14.
    Vadasz, P.: Local and global transitions to chaos and hysteresis in a porous layer heated from below. Transp. Porous Media 37, 213–245 (1999)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Bahloul, A., Boutana, N., Vasseur, P.: Double-diffusive and Soret-induced convection in a shallow horizontal porous layer. J. Fluid Mech. 491, 325–352 (2003)CrossRefGoogle Scholar

Copyright information

© Università degli Studi di Napoli "Federico II" 2018

Authors and Affiliations

  1. 1.Department of Mathematics and Applications R. CaccioppoliUniversity of Naples Federico IINaplesItaly
  2. 2.Department of Mechanics Mathematics and ManagementPolitecnico di BariBariItaly

Personalised recommendations