Ricerche di Matematica

, Volume 68, Issue 2, pp 315–331 | Cite as

Second sound near lambda transition in presence of quantum vortices

  • Lidia SalutoEmail author
  • Maria Stella Mongiovì
  • David Jou


In this paper, temperature waves (also known as second sound) are considered, with their respective coupling with waves in the order parameter describing the transition from normal phase to superfluid phase, and with waves in the vortex length density. We analyze the coupling between these three kinds of waves and explore its relevance in situations not far from the lambda transition. In particular, the expressions for the second sound speed and second sound attenuation are explicitly obtained within some approximations, showing the influence of the order parameter and the vortex length density, which is decisive close to the transition.


Second sound Lambda phase transition Superfluid helium Quantum vortices 

Mathematics Subject Classification

35G50 76F99 76Fxx 82D50 80A20 



The authors acknowledge the support of “National Group of Mathematical Physics, GNFM-INdAM”. D.J. acknowledges the financial support from the Dirección General de Investigación of the Spanish Ministry of Economy and Competitiveness under Grants FIS2012-13370-C02-01 and TEC2015-67462-C2-2-R and of the Direcciò General de Recerca of the Generalitat of Catalonia, under Grant 2017 SGR-1018. The results contained in the present paper have been partially presented in Wascom 2017, in hommage to Prof. Tommaso Ruggeri.


  1. 1.
    Ardizzone, L., Saluto, L., Mongiovi, M.S.: Non-equilibrium thermodynamical description of superfluid transition in liquid helium. JNET 42(4), 371–385 (2017). CrossRefGoogle Scholar
  2. 2.
    Casas-Vázquez, J., Jou, D.: Temperature in non-equilibrium states: a review of open problems and current proposals. Rep. Prog. Phys. 66, 1937–2023 (2003). CrossRefGoogle Scholar
  3. 3.
    Donnelly, R.J.: Quantized Vortices in Helium II. Cambridge University Press, Cambridge (1991)Google Scholar
  4. 4.
    Fabrizio, M., Mongiovi, M.S.: Phase transition and \(\lambda \) line in liquid helium. J. Non-Equil.Thermodyn 38, 185–200 (2013). CrossRefzbMATHGoogle Scholar
  5. 5.
    Fabrizio, M., Mongiovi, M.S.: Phase transition in liquid \(^{4}\)He by a mean field model. J. Thermal Stresses 36, 135–151 (2013). CrossRefGoogle Scholar
  6. 6.
    Ginzburg, V., Landau, L.: On the theory of superconductivity. Zh. Eksp. Teor. Fiz. 20, 1064–1082 (1950)Google Scholar
  7. 7.
    Jou, D., Casas-Vázquez, J., Criado-Sancho, M.: Thermodynamics of Fluids Under Flow, 2nd edn. Springer, Berlin (2011)CrossRefGoogle Scholar
  8. 8.
    Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics, 4th edn. Springer, Berlin (2010)CrossRefGoogle Scholar
  9. 9.
    Lipa, J., Nissen, J., Stricker, D., Swanson, D., Chui, T.: Specific heat of liquid helium in zero gravity very near the lambda point. Phys. Rev. B 68, 174–518 (2003). CrossRefGoogle Scholar
  10. 10.
    Liu, I.: Method of lagrange multipliers for exploitation of the entropy principle. Arch. Rat. Mech. Anal. 46, 131 (1972)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Liu, Y., Larson, M., Israelsson, U.E.: T\(_\lambda \) depression in \(^4\)He by a heat current along the \(\lambda \)-line. Physica B 284–288, 55–56 (2000). CrossRefGoogle Scholar
  12. 12.
    Mongiovi, M.S.: Extended irreversible thermodynamics of liquid helium II. Phys. Rev. B 48(9), 6276–6283 (1993). CrossRefGoogle Scholar
  13. 13.
    Mongiovi, M.S., Jou, D.: Thermodynamical derivation of a hydrodynamical model of inhomogeneous superfluid turbulence. Phys. Rev. B 75(2), 024507 (2007). CrossRefGoogle Scholar
  14. 14.
    Mongiovi, M.S., Jou, D., Sciacca, M.: Non-equilibrium thermodynamics, heat transport and thermal waves in laminar and turbulent superfluid helium. Phys. Rep. 726, 1–71 (2018). MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Mongiovi, M.S., Saluto, L.: A model of \(\lambda \) transition in liquid \(^{4}\)He. Meccanica 49, 2125–2137 (2014). MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Müller, I., Ruggeri, T.: Rational Extended Thermodynamics. Springer, New York (1998)CrossRefGoogle Scholar
  17. 17.
    Pietrowicz, S.: Private communication (2016)Google Scholar
  18. 18.
    Ruggeri, T., Strumia, A.: Convex covariant entropy density, symmetric conservative form, and shock waves in relativistic magnetohydrodynamics. J. Math. Phys. 22(8), 1824–1827 (1981). MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Saluto, L., Mongiovi, M.S., Ardizzone, L.: Thermodynamical description and vortex formation at the superfluid transition in \(^4\)He. Atti della Accademia Peloritana dei Pericolanti. Classe di Scienze Fisiche, Matematiche e Naturali (in print)Google Scholar
  20. 20.
    Tilley, D., Tilley, J.: Superfluidity and Superconductivity. IOP Publishing Ltd., Bristol (1990)Google Scholar
  21. 21.
    Van Sciver, S.W.: Helium Cryogenics. Springer Science & Business Media, Berlin (2012)CrossRefGoogle Scholar
  22. 22.
    Vinen, W.: Mutual friction in a heat current in liquid helium II. III. Theory of the mutual friction. Proc. R. Soc. Lond. A240, 493–515 (1957)Google Scholar
  23. 23.
    Weichman, P., Harter, A., Goodstein, D.: Criticality and superfluidity in liquid \({}^{4}{\rm He}\) under nonequilibrium conditions. Rev. Mod. Phys. 73, 1–15 (2001). CrossRefGoogle Scholar

Copyright information

© Università degli Studi di Napoli "Federico II" 2018

Authors and Affiliations

  • Lidia Saluto
    • 1
    Email author
  • Maria Stella Mongiovì
    • 2
  • David Jou
    • 3
  1. 1.Unità di Ricerca INdAM c/o DIIDUniversità degli Studi di PalermoPalermoItaly
  2. 2.Dipartimento di Innovazione Industriale e Digitale (DIID)Università degli Studi di PalermoPalermoItaly
  3. 3.Departament de FisicaUniversitat Autònoma de BarcelonaBellaterraSpain

Personalised recommendations