Ricerche di Matematica

, Volume 68, Issue 2, pp 333–339 | Cite as

A Riemann-type theorem for a Riemann-type integral

  • Aljoša VolčičEmail author


For functions which are Henstock–Kurzweil integrable but not Lebesgue-integrable we prove a theorem which resembles the Riemann theorem on the rearrangement of conditionally convergent series.


Rearrangement Henstock–Kurzweil integral Fubini-Tonelli theorem 

Mathematics Subject Classification

26A39 40A10 



The author wants to thank Washek Pfeffer, Piero Papini and Zoltán Buczolich for helpful discussions on several aspects of the paper.


  1. 1.
    Henstock, R.: A problem in two-dimensional integration. J. Austral. Math. Soc. Ser. A 35(3), 386–404 (1983)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Lee, T.Y.: Product variational measures and Fubini–Tonelli type theorems for the Henstock–Kurzweil integral. J. Math. Anal. Appl. 298, 677–692 (2004)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Pfeffer, W.: The Riemann Approach to Integration. Cambridge University Press, Cambridge (1993)zbMATHGoogle Scholar
  4. 4.
    Riemann, B.: Über die Darstellbarkeit einer Function durch eine trigonometrische Reihe. Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen, vol. 13 (1867)Google Scholar
  5. 5.
    Rao, G., Tulone, F.: Analogue of the Riemann-Dini theorem for non-absolutely convergent integrals. Le Matematiche, vol. LXII fasc. I, (2007) 129–134Google Scholar
  6. 6.
    Rao, G., Tulone, F.: Henstock integral and Dini-Riemann theorem. Le Matematiche, vol. LXIV fasc. II, (2009) 71–77Google Scholar

Copyright information

© Università degli Studi di Napoli "Federico II" 2018

Authors and Affiliations

  1. 1.Department of Mathematics and InformaticsUniversity of CalabriaRendeItaly

Personalised recommendations