Advertisement

Ricerche di Matematica

, Volume 67, Issue 1, pp 205–225 | Cite as

Time heterogeneous programs of vaccination awareness: modeling and analysis

  • B. Buonomo
  • N. Chitnis
  • A. d’Onofrio
Article

Abstract

We investigate the role of time heterogeneity of public health systems efforts in favoring the propensity of parents to vaccinate their newborns against a target childhood disease. The starting point of our investigation is the behavioral-epidemiology model proposed by d’Onofrio et al. (PLoS ONE 7:e45653, 2012), where the PHS effort was assumed to be constant. We also consider the co-presence of another layer of temporal heterogeneity: seasonality in the contact rate of the disease. We mainly assume that the effort is periodic with a 1-year period because of alternating working and holiday periods. We show that if the average effort is larger than a threshold, then the disease can be eliminated leading to an ideal equilibrium point with \(100\%\) of vaccinated newborns. A more realistic disease-free equilibrium can also be reached, under a condition that depends on the whole form of the time profile describing the PHS effort. We also generalize our disease elimination-related results to a wide class of time-heterogenous PHS efforts. Finally, we analytically show that if the disease elimination is not reached, then the disease remains uniformly persistent.

Keywords

Infectious diseases Seasonality Vaccine Behavior Public health 

Mathematics Subject Classification

92D30 37B55 

Notes

Acknowledgements

The work of BB has been performed under the auspices of the Italian National Group for the Mathematical Physics (GNFM) of the National Institute for Advanced Mathematics (INdAM).

References

  1. 1.
    Anderson, R.M.: The impact of vaccination on the epidemiology of infectious diseases. In: Bloom, B.R., Lambert, P.-H. (eds.) The Vaccine Book, 2nd edn, pp. 3–31. Elsevier B. V, Amsterdam (2016)Google Scholar
  2. 2.
    Anderson, R.M., May, R.M.: Infectious Diseases of Humans. Dynamics and Control. Oxford University Press, Oxford (1991)Google Scholar
  3. 3.
    Bauch, C.T.: Imitation dynamics predict vaccinating behaviour. Proc. R. Soc. B 272, 1669–1675 (2005)CrossRefGoogle Scholar
  4. 4.
    Bloom, B.R., Lambert, P.-H. (eds.): The Vaccine Book, 2nd edn. Elsevier B. V, Amsterdam (2016)Google Scholar
  5. 5.
    Brauer, F., van den Driessche, P., Wu, J.: Mathematical Epidemiology. Lecture Notes in Mathematics. Mathematical Biosciences Subseries, vol. 1945. Springer, Berlin (2008)zbMATHGoogle Scholar
  6. 6.
    Buonomo, B., d’Onofrio, A., Lacitignola, D.: Modeling of pseudo-rational exemption to vaccination for SEIR diseases. J. Math. Anal. Appl. 404, 385–398 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Buonomo, B., Carbone, G., d’Onofrio, A.: Effect of seasonality on the dynamics of an imitation-based vaccination model with public health intervention. Math. Biosci. Eng. 15, 299–321 (2018)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Buonomo, B., Chitnis, N., d’Onofrio, A.: Seasonality in epidemic models: a literature review. Ric. Mat. (2018).  https://doi.org/10.1007/s11587-017-0348-6
  9. 9.
    Buonomo, B., d’Onofrio, A., Manfredi, P.: Optimal time-profiles of public health intervention to shape voluntary vaccination for childhood diseases. (Submitted)Google Scholar
  10. 10.
    Caminade, C., Kovats, S., Rocklov, J., Tompkins, A.M., Morse, A.P., Colón-González, F.J., Stenlund, H., Martens, P., Lloyd, S.J.: Impact of climate change on global malaria distribution. Proc. Nat. Acad. Sci. USA 111, 3286–3291 (2014)Google Scholar
  11. 11.
    Capasso, V.: Mathematical Structures of Epidemic Systems. Springer, Berlin (1993)CrossRefzbMATHGoogle Scholar
  12. 12.
    d’Onofrio, A., Manfredi, P., Poletti, P.: The impact of vaccine side effects on the natural history of immunization programmes: an imitation-game approach. J. Theor. Biol. 273, 63–71 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    d’Onofrio, A., Manfredi, P., Salinelli, E.: Vaccinating behaviour, information, and the dynamics of SIR vaccine preventable diseases. Theor. Popul. Biol. 71, 301–317 (2007)CrossRefzbMATHGoogle Scholar
  14. 14.
    d’Onofrio, A., Manfredi, P., Salinelli, E.: Fatal SIR diseases and rational exemption to vaccination. Math. Med. Biol. 25, 337–357 (2008)CrossRefzbMATHGoogle Scholar
  15. 15.
    d’Onofrio, A., Manfredi, P., Salinelli, E.: Vaccinating behaviour and the dynamics of vaccine preventable infections. In: Manfredi, P., d’Onofrio, A., et al. (eds.) Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases, pp. 267–287. Springer, New York (2013)CrossRefGoogle Scholar
  16. 16.
    d’Onofrio, A., Manfredi, P., Poletti, P.: The interplay of public intervention and private choices in determining the outcome of vaccination programmes. PLoS One 7, e45653 (2012)CrossRefGoogle Scholar
  17. 17.
    Elliman, D., Bedford, H.: MMR: Where are we now? Arch. Dis. Childh. 92, 1055–1057 (2007)CrossRefGoogle Scholar
  18. 18.
    Hale, J.K.: Ordinary Differential Equations. Dover Publications, Mineola (1997)zbMATHGoogle Scholar
  19. 19.
    Hale, J.K., Lopes, O.: Fixed point theorems and dissipative processes. J. Differ. Equ. 13, 391–402 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kata, A.: A postmodern Pandora’s box: anti-vaccination misinformation on the Internet. Vaccine 28, 1709–1716 (2010)CrossRefGoogle Scholar
  21. 21.
    Kata, A.: Anti-vaccine activists, Web 2.0, and the postmodern paradigm-an overview of tactics and tropes used online by the anti-vaccination movement. Vaccine 30, 3778–3789 (2012)Google Scholar
  22. 22.
    Keeling, M.J., Rohani, P.: Modeling Infectious Diseases in Humans and Animals. Princeton University Press, Princeton (2008)zbMATHGoogle Scholar
  23. 23.
    Landau, L.D., Lifshitz, E.M.: Mechanics. Pergamon Press, Oxford (1976)zbMATHGoogle Scholar
  24. 24.
    L-fstedt, R.: Risk Management in Post-Trust Societies. Palgrave Macmillan, New York (2005)Google Scholar
  25. 25.
    Manfredi, P., d’Onofrio, A. (eds.): Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases. Springer, New York (2013)zbMATHGoogle Scholar
  26. 26.
    Martcheva, M.: An Introduction to Mathematical Epidemiology. Texts in Applied Mathematics, vol. 61. Springer, New York (2015)zbMATHGoogle Scholar
  27. 27.
    Miller, E., Gay, N.J.: Epidemiological determinants of pertussis. Dev. Biol. Stand. 89, 15–23 (1997)Google Scholar
  28. 28.
    Napier, G., Lee, D., Robertson, C., Lawson, A., Pollock, K.G.: A model to estimate the impact of changes in MMR vaccine uptake on inequalities in measles susceptibility in Scotland. Stat. Methods Med. Res. 25, 1185–1200 (2016)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Philipson, T.: Private Vaccination and Public Health an empirical examination for U.S. Measles. J. Hum. Res. 31, 611–630 (1996)CrossRefGoogle Scholar
  30. 30.
    Thieme, H.: Uniform weak implies uniform strong persistence for non-autonomous semiflows. Proc. Am. Math. Soc. 127(8), 2395–2403 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Thieme, H.R.: Uniform persistence and permanence for non-autonomous semiflows in population biology. Math. Biosci. 166(2), 173–201 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    van Lier, A., van de Kassteele, J., de Hoogh, P., Drijfhout, I., de Melker, H.: Vaccine uptake determinants in The Netherlands. Eur. J. Public Health 24, 304–309 (2013)CrossRefGoogle Scholar
  33. 33.
    Wang, Z., Bauch, C.T., Bhattacharyya, S., d’Onofrio, A., Manfredi, P., Perc, M., Perra, N., Salathe, M., Zhao, D.: Statistical physics of vaccination. Phys. Rep. 664, 1–113 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Wolfe, R.M., Sharp, L.K.: Anti-vaccinationists past and present. Br. Med. J. 325, 430 (2002)CrossRefGoogle Scholar
  35. 35.
    Zhao, X.Q.: Dynamical Systems in Population Biology. CMS Books in Mathematics, vol. 16. Springer, New York (2003)CrossRefzbMATHGoogle Scholar

Copyright information

© Università degli Studi di Napoli "Federico II" 2018

Authors and Affiliations

  1. 1.Department of Mathematics and ApplicationsUniversity of Naples Federico IINaplesItaly
  2. 2.Department of Public Health and EpidemiologySwiss Tropical and Public Health InstituteBaselSwitzerland
  3. 3.International Prevention Research InstituteLyonFrance
  4. 4.University of BaselBaselSwitzerland

Personalised recommendations