Ricerche di Matematica

, Volume 67, Issue 1, pp 7–25 | Cite as

Seasonality in epidemic models: a literature review

  • B. Buonomo
  • N. Chitnis
  • A. d’Onofrio


We provide a review of some key literature results on the influence of seasonality and other time heterogeneities of contact rates, and other parameters, such as vaccination rates, on the spread of infectious diseases. This is a classical topic where highly theoretical methodologies have provided new insight on the seemingly random behavior observed in epidemic time-series. We follow the line of providing a highly personal non-systematic review of this topic, mainly based on the history of mathematical epidemiology and on the impact of reviewed articles. Our aim is to stress some issues of increasing interest, such as the public health implications of the biomathematical literature and the impact of seasonality on epidemic extinction or elimination.


Infectious diseases Seasonality Vaccine Behavior Public health 

Mathematics Subject Classification

92D30 37B55 



The work of BB has been performed under the auspices of the Italian National Group for the Mathematical Physics (GNFM) of the National Institute for Advanced Mathematics (INdAM).


  1. 1.
    Abdelrazec, A., Lenhart, S., Zhu, H.: Dynamics and optimal control of a West Nile virus model with seasonality. Can. Appl. Math. Q. 23(4), 12–33 (2015)Google Scholar
  2. 2.
    Altizer, S., Dobson, A., Hosseini, P., Hudson, P., Pascual, M., Rohani, P.: Seasonality and the dynamics of infectious diseases. Ecol. Lett. 9, 467–484 (2006)Google Scholar
  3. 3.
    Anita, S., Arnautu, V., Capasso, V.: An Introduction to Optimal Control Problems in Life Sciences and Economics. Birkhäuser, Boston (2010)zbMATHGoogle Scholar
  4. 4.
    Aron, J.L.: Multiple attractors in the response to a vaccination program. Theor. Popul. Biol. 38, 58–67 (1990)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Aron, J.L., Schwartz, I.B.: Seasonality and period-doubling bifurcations in an epidemic model. J. Theor. Biol. 110, 665–679 (1984)MathSciNetGoogle Scholar
  6. 6.
    Aronsson, G., Mellander, I.: A deterministic model in biomathematics. Asymptotic behavior and threshold conditions. Math. Biosci. 49, 207–222 (1980)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bacaër, N.: Approximation of the basic reproduction number \(R_0\) for vector-borne diseases with a periodic vector population. Bull. Math. Biol. 69, 1067–1091 (2007)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Bacaër, N., Guernaoui, S.: The epidemic threshold of vector-borne diseases with seasonality: the case of cutaneous leishmaniasis in Chichaoua, Morocco. J. Math. Biol. 53, 421–436 (2006)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Barrientos, P.G., Angel Rodriguez, J., Ruiz-Herrera, A.: Chaotic dynamics in the seasonally forced SIR epidemic model. J. Math. Biol. 75, 1655–1668 (2017)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Bartlett, M.S.: Measles periodicity and community size. J. R. Stat. Soc. A 120, 48–70 (1957)Google Scholar
  11. 11.
    Ben-Mizrachi, A., Procaccia, I., Grassberger, P.: Characterization of experimental (noisy) strange attractors. Phys. Rev. A 29, 975 (1984)Google Scholar
  12. 12.
    Billings, L., Schwartz, I.B.: Exciting chaos with noise: unexpected dynamics in epidemic outbreaks. J. Math. Biol. 44, 31–48 (2002)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Bjornstad, O.N., Finkenstadt, B.F., Grenfell, B.T.: Dynamics of measles epidemics: estimating scaling of transmission rates using a time series SIR model. Ecol. Monogr. 72(2), 169–184 (2002)Google Scholar
  14. 14.
    Breen, G.E., Benjamin, B.: Measles in London. The Lancet 254(6579), 620–625 (1949)Google Scholar
  15. 15.
    Brownlee, J.: An investigation into the periodicity of measles epidemics in London from 1703 to the present day by the method of the periodogram. Phil. Trans. R. Soc. Lond. B 208, 225–250 (1918)Google Scholar
  16. 16.
    Buonomo, B., Carbone, G., d’Onofrio, A.: Effect of seasonality on the dynamics of an imitation-based vaccination model with public health intervention. Math. Biosci. Eng. 15, 299–321 (2018)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Buonomo, B., Della Marca, R.: Optimal bed-net usage for a dengue disease model with mosquito seasonal pattern. Math. Meth. Appl. Sci.
  18. 18.
    Buonomo, B., d’Onofrio, A., Lacitignola, D.: Modeling of pseudo-rational exemption to vaccination for SEIR diseases. J. Math. Anal. Appl. 404, 385–398 (2013)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Caminade, C., Kovats, S., Rocklov, J., Tompkins, A.M., Morse, A.P., Colón-González, F.J., Stenlund, H., Martens, P., Lloyd, S.J.: Impact of climate change on global malaria distribution. Proc. Nat. Acad. Sci. U S A 111, 3286–3291 (2014)Google Scholar
  20. 20.
    Capasso, V.: Mathematical Structures of Epidemic Systems. Springer, Berlin (1993)zbMATHGoogle Scholar
  21. 21.
    Chaves, L.F., Pascual, M.: Climate cycles and forecasts of cutaneous leishmaniasis, a nonstationary vector-borne disease. PLOS Med. 3, e295 (2006)Google Scholar
  22. 22.
    Childs, D.Z., Boots, M.: The interaction of seasonal forcing and immunity and the resonance dynamics of malaria. J. R. Soc. Interface 7, 309–319 (2010)Google Scholar
  23. 23.
    Chitnis, N., Hardy, D., Smith, T.: A periodically-forced mathematical model for the seasonal dynamics of malaria in mosquitoes. Bull. Math. Biol. 74, 1098–1124 (2012)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Chow, S.N., Hale, J.K., Mallet-Paret, J.: An example of bifurcation to homoclinic orbits. J. Differ. Equ. 37, 351–373 (1980)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Cintron-Arias, A., Banks, H.T., Capaldi, A., Lloyd, A.L.: A sensitivity matrix based methodology for inverse problem formulation. J. Inverse Ill-Posed Probl. 17, 1–20 (2009)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Deguen, A., Thomas, G., Chau, N.P.: Estimation of the contact rate in a seasonal SEIR model: application to chickenpox incidence in France. Stat. Med. 19, 1207–1216 (2000)Google Scholar
  27. 27.
    De Oliveira, J.C.F., Hale, J.K.: Dynamic behavior from bifurcation equations. Tohoku Math. J. 32, 577–592 (1980)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Dietz, K.: The incidence of infectious diseases under the influence of seasonal fluctuations. In: Mathematical Models in Medicine, pp. 1–15. Springer, Berlin (1976)Google Scholar
  29. 29.
    Dietz, K., Molineaux, L., Thomas, A.: A malaria model tested in the African savannah. Bull. World Health Organ. 50, 347–357 (1974)Google Scholar
  30. 30.
    d’Onofrio, A.: Stability properties of pulse vaccination strategy in SEIR epidemic model. Math. Biosci. 179, 57–72 (2002)MathSciNetzbMATHGoogle Scholar
  31. 31.
    d’Onofrio, A.: Pulse vaccination strategy in the SIR epidemic model: global asymptotic stable eradication in presence of vaccine failures. Math. Comput. Model. 36, 473–489 (2002)MathSciNetzbMATHGoogle Scholar
  32. 32.
    d’Onofrio, A.: Vaccination policies and nonlinear force of infection: generalization of an observation by Alexander and Moghadas (2004). Appl. Math. Comput. 168, 613–622 (2005)MathSciNetzbMATHGoogle Scholar
  33. 33.
    d’Onofrio, A.: Biomathematical analysis and extension of the new class of epidemic models proposed by Satsuma et al. (2004). Appl. Math. Comput. 170, 125–134 (2005)MathSciNetzbMATHGoogle Scholar
  34. 34.
    d’Onofrio, A.: A note on the global behaviour of the network-based SIS epidemic model. Nonlinear Anal. RWA 9, 1567–1572 (2008)MathSciNetzbMATHGoogle Scholar
  35. 35.
    d’Onofrio, A., Manfredi, P.: Information-related changes in contact patterns may trigger oscillations in the endemic prevalence of infectious diseases. J. Theor. Biol. 256, 473–478 (2009)MathSciNetGoogle Scholar
  36. 36.
    d’Onofrio, A., Manfredi, P., Salinelli, E.: Vaccinating behaviour, information, and the dynamics of SIR vaccine preventable diseases. Theor. Popul. Biol. 71, 301–317 (2007)zbMATHGoogle Scholar
  37. 37.
    d’Onofrio, A., Manfredi, P., Salinelli, E.: Fatal SIR diseases and rational exemption to vaccination. Math. Med. Biol. 25, 337–357 (2008)zbMATHGoogle Scholar
  38. 38.
    Doutor, P., Rodrigues, P., Soares, M., Chalub, F.A.: Optimal vaccination strategies and rational behaviour in seasonal epidemics. J. Math. Biol. 73, 1437–1465 (2016)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Duncan, S.R.: Estimating the disease parameters for smallpox in London over the period 1708 to 1748. In: IFAC Proceedings Volumes 38, pp. 1047–1052 (2005)Google Scholar
  40. 40.
    Duncan, C.J., Duncan, S.R., Scott, S.: Oscillatory dynamics of smallpox and the impact of vaccination. J. Theor. Biol. 183, 447–454 (1996)Google Scholar
  41. 41.
    Duncan, C.J., Duncan, S.R., Scott, S.: The dynamics of scarlet fever epidemics in England and Wales in the 19th century. Epidemiol. Infect. 117, 493–499 (1996)Google Scholar
  42. 42.
    Duncan, C.J., Duncan, S.R., Scott, S.: Whooping cough epidemics in London, 1701–1812: infection dynamics, seasonal forcing and the effects of malnutrition. Proc. R. Soc. Lond. B Biol. Sci. 263, 445–450 (1996)Google Scholar
  43. 43.
    Duncan, C.J., Duncan, S.R., Scott, S.: The dynamics of measles epidemics. Theor. Popul. Biol. 52, 155–163 (1997)zbMATHGoogle Scholar
  44. 44.
    Duncan, C.J., Duncan, S.R., Scott, S.: The effects of population density and malnutrition on the dynamics of whooping cough. Epidemiol. Infect. 121, 325–334 (1998)Google Scholar
  45. 45.
    Duncan, S.R., Scott, S., Duncan, C.J.: Modelling the dynamics of scarlet fever epidemics in the 19th century. Eur. J. Epidemiol. 16, 619–626 (2000)Google Scholar
  46. 46.
    Earn, D.J., Rohani, P., Bolker, B.M., Grenfell, B.T.: A simple model for complex dynamical transitions in epidemics. Science 287(5453), 667–670 (2000)Google Scholar
  47. 47.
    Eckhoff, P.A., Wenger, E.A.: Spatial agent-based simulation modeling in public health: design, implementation, and applications for malaria epidemiology. In: Arifin, S.M.N., Madey, G.R., Collins, F.H. (eds.) The EMOD Individual-Based Model, 1st edn, pp. 185–208. Wiley, Hoboken (2016). chap.11Google Scholar
  48. 48.
    Ellner, S.P., Bailey, B.A., Bobashev, G.V., Gallant, A.R., Grenfell, B.T., Nychka, D.W.: Noise and nonlinearity in measles epidemics: combining mechanistic and statistical approaches to population modeling. Am. Nat. 151, 425–440 (1998)Google Scholar
  49. 49.
    Farmer, J.D., Ott, E., Yorke, J.A.: The dimension of chaotic attractors. Physica D 7, 153–180 (1983)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Feigenbaum, M.J.: Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19, 25–52 (1978)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Feigenbaum, M.J.: The onset spectrum of turbulence. Phys. Lett. A 74, 375–378 (1979)MathSciNetGoogle Scholar
  52. 52.
    Ferrari, M.J., Djibo, A., Grais, R.F., Bharti, N., Grenfell, B.T., Bjornstad, O.N.: Rural-urban gradient in seasonal forcing of measles transmission in Niger. Proc. R. Soc. Lond. B Biol. Sci. 277, 2775–2782 (2010)Google Scholar
  53. 53.
    Finkenstadt, B.F., Grenfell, B.T.: Time series modelling of childhood diseases: a dynamical systems approach. J. R. Stat. Soc. Ser. C Appl. Stat. 49(2), 187–205 (2000)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Fonda, A.: Uniformly persistent semidynamical systems. Proc. Am. Math. Soc. 104, 111–116 (1988)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Glendinning, P., Perry, L.P.: Melnikov analysis of chaos in a simple epidemiological model. J. Math. Biol. 35, 359–373 (1997)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Grassberger, P., Procaccia, I.: Characterization of strange attractors. Phys. Rev. Lett. 50, 346 (1983)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Grassly, N.C., Fraser, C.: Seasonal infectious disease epidemiology. Proc. R. Soc. Lond. B Biol. Sci. 273(1600), 2541–50 (2006)Google Scholar
  58. 58.
    Greenman, J., Kamo, M., Boots, M.: External forcing of ecological and epidemiological systems: a resonance approach. Physica D 190, 136–151 (2004)zbMATHGoogle Scholar
  59. 59.
    Griffin, J.T., Hollingsworth, T.D., Okell, L.C., Churcher, T.S., White, M., Hinsley, W., Bousema, T., Drakeley, C.J., Ferguson, N.M., Basáñez, M.G., Ghani, A.C.: Reducing Plasmodium falciparum malaria transmission in Africa: a model-based evaluation of intervention strategies. PLoS Med. 7, e1000324 (2010)Google Scholar
  60. 60.
    Grossman, Z.: Oscillatory phenomena in a model of infectious diseases. Theor. Popul. Biol. 18, 204–243 (1980)MathSciNetzbMATHGoogle Scholar
  61. 61.
    Guckenheimer, J., Holmes, P.J.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, Berlin (2013)zbMATHGoogle Scholar
  62. 62.
    Hale, J.K.: Stability from the bifurcation function. In: Differential Equations, pp. 23–30. Academic Press, New York (1980)Google Scholar
  63. 63.
    Hale, J.K.: Ordinary Differential Equations. Dover Publications, New York (1997)zbMATHGoogle Scholar
  64. 64.
    Hale, J.K., Taboas, P.: Interaction of damping and forcing in a second order equation. Nonlinear Anal. TMA 2, 77–84 (1978)MathSciNetzbMATHGoogle Scholar
  65. 65.
    Heesterbeek, J.A.P., Roberts, M.G.: Threshold quantities for infectious diseases in periodic environments. J. Biol. Syst. 3, 779–787 (1995)Google Scholar
  66. 66.
    Hethcote, H.W.: Asymptotic behavior in a deterministic epidemic model. Bull. Math. Biol. 35, 607–614 (1973)zbMATHGoogle Scholar
  67. 67.
    Hoshen, M.B., Morse, A.P.: A weather-driven model of malaria transmission. Malar. J. 3, 32 (2004)Google Scholar
  68. 68.
    Inoue, M., Kamifukumoto, H.: Scenarios leading to chaos in a forced Lotka–Volterra model. Prog. Theor. Phys. 71, 930–937 (1984)MathSciNetzbMATHGoogle Scholar
  69. 69.
    Imam, Z.E., Hosny, A., Alfy, L.B., El Rai, F.: Medical importance of measles in UAR (Egypt). Archiv für die gesamte Virusforschung 16, 49–52 (1965)Google Scholar
  70. 70.
    Jazwinski, A.H.: Stochastic Processes and Statistical Filtering. Academic Press, New York (1970)zbMATHGoogle Scholar
  71. 71.
    Kalivianakis, M., Mous, S.L.J., Grasman, J.: Reconstruction of the seasonally varying contact rate for measles. Math. Biosci. 124, 225–234 (1994)zbMATHGoogle Scholar
  72. 72.
    Keeling, M.J., Rohani, P., Grenfell, B.T.: Seasonally forced disease dynamics explored as switching between attractors. Physica D 148, 317–335 (2001)zbMATHGoogle Scholar
  73. 73.
    Kernighan, B.W., Pike, R.: The Unix Programming Environment. Englewood Cliffs, Prentice-Hall (1984)Google Scholar
  74. 74.
    Kernighan, B.W., Ritchie, D.M.: The C Programming Language. Prentice-Hall, Englewood Cliffs (1988)zbMATHGoogle Scholar
  75. 75.
    Kim, J.E., Lee, H., Lee, C.H., Lee, S.: Assessment of optimal strategies in a two-patch dengue transmission model with seasonality. PLoS ONE 12(3), e0173673 (2017)Google Scholar
  76. 76.
    Kot, M., Schaffer, W.M., Truty, G.L., Graser, D.J., Olsen, L.F.: Changing criteria for imposing order. Ecol. Model. 43, 75–110 (1988)Google Scholar
  77. 77.
    Kuznetsov, Y.A., Piccardi, C.: Bifurcation analysis of periodic SEIR and SIR epidemic models. J. Math. Biol. 32, 109–121 (1994)MathSciNetzbMATHGoogle Scholar
  78. 78.
    Lajmanovich, A., Yorke, J.A.: A deterministic model for gonorrhea in a nonhomogeneous population. Math. Biosci. 28, 221–236 (1976)MathSciNetzbMATHGoogle Scholar
  79. 79.
    Landau, L.D., Lifshitz, E.M.: Mechanics. Pergamon Press, Oxford (1976)zbMATHGoogle Scholar
  80. 80.
    Lenhart, S., Workman, J.T.: Optimal Control Applied to Biological Models. Chapman & Hall, Boca Raton (2007)zbMATHGoogle Scholar
  81. 81.
    Li, T.-Y., Yorke, J.A.: Period three implies chaos. Am. Math. Mon. 82, 985–992 (1975)MathSciNetzbMATHGoogle Scholar
  82. 82.
    Lloyd, A.L.: Destabilization of epidemic models with the inclusion of realistic distributions of infectious periods. Proc. R. Soc. Lond. B Biol. Sci. 268, 985–993 (2001)Google Scholar
  83. 83.
    London, W.P., Yorke, J.A.: Recurrent outbreaks of measles, chickenpox and mumps I. Seasonal variation in contact rates. Am. J. Epidemiol. 98, 453–468 (1973)Google Scholar
  84. 84.
    Magori, K., Legros, M., Puente, M.E., Focks, D.A., Scott, T.W., Lloyd, A.L., Gould, F.: Skeeter Buster: a stochastic, spatially explicit modeling tool for studying Aedes aegypti population replacement and population suppression strategies. PLoS Negl. Trop. Dis. 3, e508 (2009)Google Scholar
  85. 85.
    Metcalf, C.J.E., Bjornstad, O.N., Grenfell, B.T., Andreasen, V.: Seasonality and comparative dynamics of six childhood infections in pre-vaccination Copenhagen. Proc. R. Soc. Lond. B Biol. Sci. 276, 4111–4118 (2009)Google Scholar
  86. 86.
    Nakata, Y., Kuniya, T.: Global dynamics of a class of SEIRS epidemic models in a periodic environment. J. Math. Anal. Appl. 325, 230–237 (2010)MathSciNetzbMATHGoogle Scholar
  87. 87.
    Olsen, L.F., Schaffer, W.M.: Chaos versus noisy periodicity: alternative hypotheses for childhood epidemics. Science 249, 499–504 (1990)Google Scholar
  88. 88.
    Olsen, L.F., Truty, G.L., Schaffer, W.M.: Oscillations and chaos in epidemics: a nonlinear dynamic study of six childhood diseases in Copenhagen, Denmark. Theor. Popul. Biol. 33, 344–370 (1988)MathSciNetzbMATHGoogle Scholar
  89. 89.
    Plaisier, A.P., van Oortmarssen, G.J., Habbema, J.D.F., Remme, J., Alley, E.S.: ONCHOSIM: a model and computer simulation program for the transmission and control of onchocerciasis. Comput. Methods Programs Biomed. 31, 43–56 (1990)Google Scholar
  90. 90.
    Picken, R.M.F.: The administrative control of measles. Br. Med. J. 1915–2, 429–430 (1915)Google Scholar
  91. 91.
    Pourabbas, E., d’Onofrio, A., Rafanelli, M.: A method to estimate the incidence of communicable diseases under seasonal fluctuations with application to cholera. Appl. Math. Comput. 118, 161–174 (2001)MathSciNetzbMATHGoogle Scholar
  92. 92.
    Rebelo, C., Margheri, A., Bacaër, N.: Persistence in seasonally forced epidemiological models. J. Math. Biol. 64, 933–949 (2012)MathSciNetzbMATHGoogle Scholar
  93. 93.
    Rohani, P., Earn, D.J., Grenfell, B.T.: Opposite patterns of synchrony in sympatric disease metapopulations. Science 286(5441), 968–971 (1999)Google Scholar
  94. 94.
    Rohani, P., Keeling, M.J., Grenfell, B.T.: The interplay between determinism and stochasticity in childhood diseases. Am. Nat. 159, 469–481 (2002)Google Scholar
  95. 95.
    Ross, R.: Some quantitative studies in epidemiology. Nature 87(2188), 466–467 (1911)zbMATHGoogle Scholar
  96. 96.
    Schaffer, W.M., Kot, M.: Nearly one dimensional dynamics in an epidemic. J. Theor. Biol. 112, 403–427 (1985)MathSciNetGoogle Scholar
  97. 97.
    Schenzle, D.: An age-structured model of pre-and post-vaccination measles transmission. Math. Med. Biol. 1, 169–191 (1984)MathSciNetzbMATHGoogle Scholar
  98. 98.
    Schwartz, I.B.: Multiple stable recurrent outbreaks and predictability in seasonally forced nonlinear epidemic models. J. Math. Biol. 21, 347–361 (1985)MathSciNetzbMATHGoogle Scholar
  99. 99.
    Schwartz, I.B., Smith, H.L.: Infinite subharmonic bifurcation in an SEIR epidemic model. J. Math. Biol. 18, 233–253 (1983)MathSciNetzbMATHGoogle Scholar
  100. 100.
    Smith, H.L.: Subharmonic bifurcation in an S-I-R epidemic model. J. Math. Biol. 17, 163–177 (1983)MathSciNetzbMATHGoogle Scholar
  101. 101.
    Smith, T., Maire, N., Ross, A., Penny, M., Chitnis, N., Schapira, A., Studer, A., Genton, B., Lengeler, C., Tediosi, F., de Savigny, D., Tanner, M.: Towards a comprehensive simulation model of malaria epidemiology and control. Parasitology 135, 1507–1516 (2008)Google Scholar
  102. 102.
    Soper, H.E.: The interpretation of periodicity in disease prevalence. J. R. Stat. Soc. 92, 34–73 (1929)zbMATHGoogle Scholar
  103. 103.
    Stirzaker, D.R.: A perturbation method for the stochastic recurrent epidemic. J. Inst. Math. Appl. 15, 135–160 (1975)MathSciNetzbMATHGoogle Scholar
  104. 104.
    Stone, L., Olinky, R., Huppert, A.: Seasonal dynamics of recurrent epidemics. Nature 446, 533–536 (2007)zbMATHGoogle Scholar
  105. 105.
    Sutherland, I., Fayers, P.M.: Effect of measles vaccination on incidence of measles in the community. Br. Med. J. 1971–1, 698–702 (1971)Google Scholar
  106. 106.
    Takens, F.: Detecting strange attractors in turbulence. In: Dynamical Systems and Turbulence, Warwick 1980, pp. 366–381. Springer, Berlin (1981)Google Scholar
  107. 107.
    Tanaka, G., Aihara, K.: Effects of seasonal variation patterns on recurrent outbreaks in epidemic models. J. Theor. Biol. 317, 87–95 (2013)MathSciNetzbMATHGoogle Scholar
  108. 108.
    Thieme, H.: Uniform weak implies uniform strong persistence for non-autonomous semiflows. Proc. Am. Math. Soc. 127(8), 2395–2403 (1999)MathSciNetzbMATHGoogle Scholar
  109. 109.
    Thieme, H.R.: Uniform persistence and permanence for non-autonomous semiflows in population biology. Math. Biosci. 166(2), 173–201 (2000)MathSciNetzbMATHGoogle Scholar
  110. 110.
    Tompkins, A.M., Volker, E.: A regional-scale, high resolution dynamical malaria model that accounts for population density, climate and surface hydrology. Malar. J. 12, 65 (2013)Google Scholar
  111. 111.
    Wang, Z., Bauch, C.T., Bhattacharyya, S., d’Onofrio, A., Manfredi, P., Perc, M., Perra, N., Salathe, M., Zhao, D.: Statistical physics of vaccination. Phys. Rep. 664, 1–113 (2016)MathSciNetzbMATHGoogle Scholar
  112. 112.
    Wang, W., Zhao, X.Q.: Threshold dynamics for compartmental epidemic models in periodic environments. J. Dyn. Differ. Equ. 20, 699–717 (2008)MathSciNetzbMATHGoogle Scholar
  113. 113.
    Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (2003)zbMATHGoogle Scholar
  114. 114.
    Wolf, A., Swift, J.B., Swinney, L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985)MathSciNetzbMATHGoogle Scholar
  115. 115.
    Zhang, F., Zhao, X.Q.: A periodic epidemic model in a patchy environment. J. Math. Anal. Appl. 325, 496–516 (2007)MathSciNetzbMATHGoogle Scholar
  116. 116.
    Zhao, X.Q.: Dynamical Systems in Population Biology, CMS Books Mathematics, vol. 16. Springer, New York (2003)Google Scholar

Copyright information

© Università degli Studi di Napoli "Federico II" 2017

Authors and Affiliations

  1. 1.Department of Mathematics and ApplicationsUniversity of Naples Federico IINaplesItaly
  2. 2.Department of Public Health and EpidemiologySwiss Tropical and Public Health InstituteBaselSwitzerland
  3. 3.International Prevention Research InstituteLyonFrance
  4. 4.University of BaselBaselSwitzerland

Personalised recommendations