Advertisement

Ricerche di Matematica

, Volume 65, Issue 1, pp 263–277 | Cite as

Recent results on nonlinear extended thermodynamics of real gases with six fields Part I: general theory

  • Takashi Arima
  • Tommaso RuggeriEmail author
  • Masaru Sugiyama
  • Shigeru Taniguchi
Article

Abstract

We review the recently developed theory of extended thermodynamics (ET) of real gases with six independent fields, i.e., the mass density, the velocity, the temperature and the dynamic pressure, without adopting near-equilibrium approximation. We discuss the polytropic and non-polytropic cases of rarefied polyatomic gases in detail, including the closure via nonlinear molecular ET.

Keywords

Extended thermodynamics Rarefied polyatomic gas Non-polytropic gas Moments theory 

Mathematics Subject Classification

82C35 76N15 35L60 82D05 82C40 

Notes

Acknowledgments

This work was partially supported by Japan Society of Promotion of Science (JSPS) No.15K21452 (T.A.) and No.25390150 (M.S.), and by National Group of Mathematical Physics GNFM-INdAM and by University of Bologna: FARB 2012 Project Extended Thermodynamics of Non-Equilibrium Processes from Macro- to Nano-Scale (T.R.).

References

  1. 1.
    Müller, I., Ruggeri, T.: Rational Extended Thermodynamics. Springer Tracts in Natural Philosophy, vol. 37, 2nd edn. Springer, New York (1998)CrossRefGoogle Scholar
  2. 2.
    Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Extended thermodynamics of dense gases. Contin. Mech. Thermodyn. 24, 271 (2012)CrossRefzbMATHGoogle Scholar
  3. 3.
    Arima, T., Sugiyama, M.: Characteristic features of extended thermodynamics of dense gases. Atti Accad. Pelorit. Pericol. 91(Suppl. No. 1), A1 (2013)MathSciNetGoogle Scholar
  4. 4.
    Ruggeri, T., Sugiyama, M.: Recent developments in extended thermodynamics of dense and rarefied polyatomic gases. Acta Appl. Math. 132, 527 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Dispersion relation for sound in rarefied polyatomic gases based on extended thermodynamics. Contin. Mech. Thermodyn. 25, 727 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: A study of linear waves based on extended thermodynamics for rarefied polyatomic gases. Acta Appl. Math. 132, 15 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Arima, T., Taniguchi, S., Sugiyama, M.: Light scattering in rarefied polyatomic gases based on extended thermodynamics. In: Proceedings of the 34th Symposium on Ultrasonic Electronics, vol. 15 (2013)Google Scholar
  8. 8.
    Taniguchi, S., Arima, T., Ruggeri, T., Sugiyama, M.: Shock wave structure in a rarefied polyatomic gas based on extended thermodynamics. Acta Appl. Math. 132, 583 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Taniguchi, S., Arima, T., Ruggeri, T., Sugiyama, M.: Thermodynamic theory of the shock wave structure in a rarefied polyatomic gas: beyond the Bethe-Teller theory. Phys. Rev. E. 89, 013025 (2014)CrossRefGoogle Scholar
  10. 10.
    Arima, T., Barbera, E., Brini, F., Sugiyama, M.: The role of the dynamic pressure in stationary heat conduction of a rarefied polyatomic gas. Phys. Lett. A 378, 2695 (2014)CrossRefzbMATHGoogle Scholar
  11. 11.
    Barbera, E., Brini, F., Sugiyama, M.: Heat transfer problem in a van der Waals gas. Acta Appl. Math. 132, 41 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Pavić, M., Ruggeri, T., Simić, S.: Maximum entropy principle for polyatomic gases. Physica A. 392, 1302 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Arima, T., Mentrelli, A., Ruggeri, T.: Molecular extended thermodynamics of rarefied polyatomic gases and wave velocities for increasing number of moments. Ann. Phys. 345, 111 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Arima, T., Mentrelli, A., Ruggeri, T.: Extended thermodynamics of rarefied polyatomic gases and characteristic velocities. Rend. Lincei Mat. Appl. 25, 275 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Monatomic rarefied gas as a singular limit of polyatomic gas in extended thermodynamics. Phys. Lett. A 377, 2136 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Arima, T., Ruggeri, T., Sugiyama, M., Taniguchi, S.: Monatomic gas as a singular limit of polyatomic gas in molecular extended thermodynamics with many moments. Ann. Phys. (2016) (in press)Google Scholar
  17. 17.
    Ruggeri, T., Sugiyama, M.: Rational Extended Thermodynamics beyond the Monatomic Gas. Springer, Cham, Heidelberg, New York, Dordrecht, London (2015)CrossRefzbMATHGoogle Scholar
  18. 18.
    Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Extended thermodynamics of real gases with dynamic pressure: an extension of Meixner’s theory. Phys. Lett. A 376, 2799 (2012)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Arima, T., Ruggeri, T., Sugiyama, M., Taniguchi, S.: On the six-field model of fluids based on extended thermodynamics. Meccanica 49, 2181 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Taniguchi, S., Arima, T., Ruggeri, T., Sugiyama, M.: Effect of the dynamic pressure on the shock wave structure in a rarefied polyatomic gas. Phys. Fluids 26, 016103 (2014)CrossRefGoogle Scholar
  21. 21.
    Arima, T., Ruggeri, T., Sugiyama, M., Taniguchi, S.: Non-linear extended thermodynamics of real gases with 6 fields. Int. J. Non Linear Mech. 72, 6 (2015)CrossRefGoogle Scholar
  22. 22.
    Taniguchi, S., Arima, T., Ruggeri, T., Sugiyama, M.: Overshoot of the non-equilibrium temperature in the shock wave structure of a rarefied polyatomic gas subject to the dynamic pressure. Int. J. Non-Linear Mech. 79, 66 (2016)CrossRefGoogle Scholar
  23. 23.
    Ruggeri, T.: Non-linear maximum entropy principle for a polyatomic gas subject to the dynamic pressure.Bulletin of the Institute of Mathematics Academia Sinica (New Series) 11, No. 1, pp. 1 (2016)Google Scholar
  24. 24.
    Ruggeri, T.: Galilean invariance and entropy principle for systems of balance laws. The structure of the extended thermodynamics. Contin. Mech. Thermodyn. 1, 3 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Boillat, G.: Sur l’existence et la recherche d’équations de conservation supplémentaires pour les systémes hyperboliques. C. R. Acad. Sci. Paris A 278, 909 (1974)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Ruggeri, T., Strumia, A.: Main field and convex covariant density for quasi-linear hyperbolic systems. Relativistic fluid dynamics. Ann. Inst. H. Poincaré Sect. A 34, 65 (1981)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Boillat, G., Ruggeri, T.: Hyperbolic principal subsystems: entropy convexity and subcharacteristic conditions. Arch. Ration. Mech. Anal. 137, 305 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Godunov, S.K.: An interesting class of quasilinear systems. Sov. Math. 2, 947 (1961)zbMATHGoogle Scholar
  29. 29.
    de Groot, S.R., Mazur, P.: Non-Equilibrium Thermodynamics. Dover, New York (1984)zbMATHGoogle Scholar
  30. 30.
    Coleman, B.D., Gurtin, M.E.: Thermodynamics with internal state variables. J. Chem. Phys. 47, 597 (1967)CrossRefGoogle Scholar
  31. 31.
    Maugin, G.A., Muschik, W.: Thermodynamics with internal variables. Part I. General concepts. J. Non-Equilib. Thermodyn. 19, 217–249 (1994)zbMATHGoogle Scholar
  32. 32.
    Maugin, G.A., Muschik, W.: Thermodynamics with internal variables. Part II. Applications. J. Non-Equilib. Thermodyn. 19, 250 (1994)zbMATHGoogle Scholar
  33. 33.
    Meixner, J.: Absorption und Dispersion des Schalles in Gasen mit chemisch Reagierenden und Anregbaren komponenten. I. Teil. Ann. Physik 43, 470 (1943)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Meixner, J.: Allgemeine Theorie der Schallabsorption in Gasen und Flussigkeiten unter Berucksichtigung der Transporterscheinungen. Acoustica 2, 101 (1952)MathSciNetGoogle Scholar
  35. 35.
    Dreyer, W.: Maximization of the entropy in non-equilibrium. J. Phys. A: Math. Gen. 20, 6505–6517 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Müller, I., Ruggeri, T.: Extended Thermodynamics. Springer Tracts in Natural Philosophy, vol. 37, 1st edn. Springer-Verlag, New York (1993)Google Scholar
  37. 37.
    Borgnakke, C., Larsen, P.S.: Statistical collision model for Monte Carlo simulation of polyatomic gas mixture. J. Comput. Phys. 18, 405–420 (1975)CrossRefGoogle Scholar
  38. 38.
    Bourgat, J.-F., Desvillettes, L., Le Tallec, P., Perthame, B.: Microreversible collisions for polyatomic gases. Eur. J. Mech. B/Fluids 13, 237–254 (1994)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Shizuta, Y., Kawashima, S.: System of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation. Hokkaido Math. Anal. 150, 255 (1985)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Carrisi, M.C., Pennisi, S., Ruggeri, T., Sugiyama, M.: Extended thermodynamics of dense gases in the presence of dynamic pressure. Ricerche Mat. 64, 403 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Università degli Studi di Napoli "Federico II" 2016

Authors and Affiliations

  • Takashi Arima
    • 1
  • Tommaso Ruggeri
    • 2
    Email author
  • Masaru Sugiyama
    • 3
  • Shigeru Taniguchi
    • 4
  1. 1.Department of Mechanical Engineering, Faculty of EngineeringKanagawa UniversityYokohamaJapan
  2. 2.Department of Mathematics and Alma Mater Research Center on Applied Mathematics AM²University of BolognaBolognaItaly
  3. 3.Graduate School of EngineeringNagoya Institute of TechnologyNagoyaJapan
  4. 4.Department of Creative Engineering, National Institute of TechnologyKitakyushu CollegeKitakyushuJapan

Personalised recommendations