Ricerche di Matematica

, Volume 56, Issue 1, pp 19–30 | Cite as

The explicit solutions to the nonlinear Dirac equation and Dirac-Klein-Gordon equation

  • Shuji Machihara
  • Takayuki Omoso
Article

Abstract

In [3] Dias and Figueira have reported that the square of the solution for the nonlinear Dirac equation satisfies the linear wave equation in one space dimension. So the aim of this paper is to proceed with their work and to clarify a structure of the nonlinear Dirac equation. The explicit solutions to the nonlinear Dirac equation and Dirac-Klein-Gordon equation are obtained.

Keywords: Nonlinear Dirac equation, Dirac-Klein-Gordon equation, Pauli matrix

Mathematics Subject Classification (2000): 35C05, 35L45

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. Bournaveas, N.: A new proof of global existence for the Dirac Klein-Gordon equations in one space dimension. J. Funct. Anal. 173, 203–213 (2000)Google Scholar
  2. 2. Chadam, J.M.: Global solutions of the Cauchy problem for the (classical) coupled Maxwell-Dirac equations in one space dimension. J. Funct. Anal. 13, 173–184 (1973)Google Scholar
  3. 3. Dias, J.P., Figueira, M.: Time decay for the solutions of a nonlinear Dirac equation in one space dimension. Ricerche Mat. 35, 309–316 (1986)Google Scholar
  4. 4. Fang, Y.F.: On the Dirac-Klein-Gordon equation in one space dimension. Differential Integral Equations 17, 1321–1346 (2004)Google Scholar
  5. 5. Machihara, S.: The Cauchy problem for the 1-D Dirac–Klein–Gordon equation. SubmittedGoogle Scholar
  6. 6. Neveu, A., Papanicolaou, N.: Integrability of the classical [/overline /psi /sb{i}/psi/sb{i}]/sp2/sb{2} and [/overline /psi /sb{i}/psi/sb{i}]/sp{2}/sb{2} - [/overline /psi /sb{i}/gamma /sb{5}/psi/sb{i}]/sp{2}/sb{2} interactions. Comm. Math. Phys. 58, 31–64 (1978) Google Scholar
  7. 7. Reed, M.: Abstract non-linear wave equations. Lecture Notes in Mathematics 507 (1976)Google Scholar
  8. 8. Strauss, W.A.: Nonlinear invariant wave equations. Invariant wave equations (Proc. “Ettore Majorana” Internat. School of Math. Phys., Erice, 1977), Lecture Notes in Phys. 73, 197–249 (1978)Google Scholar
  9. 9. Thirring, W.E.: A soluble relativistic field theory. Ann. Physics 3, 91–112 (1958)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Shuji Machihara
    • 1
  • Takayuki Omoso
    • 1
  1. 1.Shimane University, Department of Mathematics, Matsue 690-8504Japan

Personalised recommendations