Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effect of different templating agents on cobalt ferrite (CoFe2O4) nanomaterials for high-performance supercapacitor

  • 18 Accesses


Cobalt ferrite (CoFe2O4) was successfully grown on the nickel foam by a mild hydrothermal method combined with a simple annealing treatment, utilizing SDS, PVP, CTAB, and PVA as template agents. The effect of different template agents on the morphology and electrochemical performance of CoFe2O4 electrode for supercapacitor was further investigated in detail. The physicochemical properties of the CoFe2O4 materials were examined via the X-ray diffraction, the N2 adsorption-desorption, the scanning electron microscopy, and X-ray photoelectron spectroscopy. It can be proved that the purity of the material was high; the surface morphology and aperture were changed by using different template agents. In particular, the CoFe2O4 electrode, when adding an appropriate amount of PVA, SDS, PVP, and CTAB, showed a high capacitance of 1342, 828, 1100, and 1148 F g−1 at 1 A g−1. In addition, an asymmetric supercapacitor (ASC) was assembled using CFO-A as the positive electrode, activated carbon as the negative electrode, and 6 M KOH solution as the electrolyte. The ASC own an energy density of 55.42 Wh kg−1 at a power density of 769.7 W kg−1 and a retention rate of 56% at a current density of 10 A g−1, which exhibits excellent performance.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Fu M, Chen W, Zhu X et al (2019) Crab shell derived multi-hierarchical carbon materials as a typical recycling of waste for high performance supercapacitors. Carbon 141:748–757

  2. 2.

    Zhang J, Jiang J, Li H et al (2011) A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes. J Energy Environ Sci 4(10):4009

  3. 3.

    Lee SW, Gallant BM, Byon HR et al (2011) Nanostructured carbon-based electrodes: bridging the gap between thin-film lithium-ion batteries and electrochemical capacitors. J Energy Environ Sci 4(6):1972

  4. 4.

    Tang H, Wang J, Yin H, Zhao H, Wang D, Tang Z (2015) Growth of polypyrrole ultrathin films on MoS2 monolayers as high-performance supercapacitor electrodes. J Adv Mater 27(6):1117–1123

  5. 5.

    Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. J Adv Mater 22(8):E28–E62

  6. 6.

    Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828

  7. 7.

    Yao M, Hu Z, Xu Z et al (2015) Template synthesis and characterization of nanostructured hierarchical mesoporous ribbon-like NiO as high performance electrode material for supercapacitor. J Electrochim Acta 158:96–104

  8. 8.

    Fu M, Zhu Z, Zhou Y et al (2020) Multifunctional pompon flower-like nickel ferrites as novel pseudocapacitive electrode materials and advanced absorbing materials. Ceram Int 46(1):850–856

  9. 9.

    Sankar KV, Shanmugapriya S, Surendran S et al (2018) Facile hydrothermal synthesis of carbon-coated cobalt ferrite spherical nanoparticles as a potential negative electrode for flexible supercapattery. J Colloid Interface Sci 513:480–488

  10. 10.

    Wang Z, Jia W, Jiang M et al (2016) One-step accurate synthesis of shell controllable CoFe2O4 hollow microspheres as high-performance electrode materials in supercapacitor. J Nanopart Res 9(7):2026–2033

  11. 11.

    Kennaz H, Harat A, Guellati O et al (2017) Synthesis and electrochemical investigation of spinel cobalt ferrite magnetic nanoparticles for supercapacitor application. J Solid State Electrochem 22(3):835–847

  12. 12.

    Fu M, Chen W, Ding J et al (2019) Biomass waste derived multi-hierarchical porous carbon combined with CoFe2O4 as advanced electrode materials for supercapacitors. J Alloys Compd 782:952–960

  13. 13.

    Fu M, Jiao Q, Zhao Y et al (2014) Vapor diffusion synthesis of CoFe2O4 hollow sphere/graphene composites as absorbing materials. J Mater Chem A 2(3):735–744

  14. 14.

    Xu S, Hessel CM, Ren H et al (2014) α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ Sci 7(2):632–637

  15. 15.

    Wang J, Tang H, Ren H et al (2014) pH-regulated synthesis of multi-shelled manganese oxide hollow microspheres as supercapacitor electrodes using carbonaceous microspheres as templates. Adv Sci (Weinh) 1(1):1400011

  16. 16.

    Li L, Ma R, Iyi N et al (2006) Hollow nanoshell of layered double hydroxide. Chem Commun (Camb) 29:3125–3127

  17. 17.

    Du C, Han E, Sun L et al (2020) Template agent for assisting in the synthesis of ZnCo2O4 on Ni foam for high-performance supercapacitors. Ionics 26:383–391

  18. 18.

    Tian Y, Zhu L, Han E et al (2020) Effect of templating agent on Ni, Co, Al-based layered double hydroxides for high-performance asymmetric supercapacitor. Ionics 26:367–381

  19. 19.

    Koczkur KM, Mourdikoudis S, Polavarapu L et al (2015) Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans 44(41):17883–17905

  20. 20.

    An C, Wang Y, Huang Y et al (2014) Novel three-dimensional NiCo2O4 hierarchitectures: solvothermal synthesis and electrochemical properties. Cryst Eng Comm 16(3):385–392

  21. 21.

    Deng DH, Pang H, Du JM et al (2012) Fabrication of cobalt ferrite nanostructures and comparison of their electrochemical properties. Cryst Res Technol 47(10):1032–1038

  22. 22.

    Zhang H, Gu J, Jiang Y et al (2013) Effects of sodium dodecyl sulfate on the electrochemical behavior of supercapacitor electrode MnO2. J Solid State Electrochem 18(1):235–247

  23. 23.

    Wang Y, Zhang S, Wei K et al (2006) Hydrothermal synthesis of hydroxyapatite nanopowders using cationic surfactant as a template. Mater Lett 60(12):1484–1487

  24. 24.

    Kong L-B, Lu C, Liu M-C et al (2013) Effect of surfactant on the morphology and capacitive performance of porous NiCo2O4. J Solid State Electrochem 17(5):1463–1471

  25. 25.

    Singh A, Akhtar MA, Chandra A (2017) Trade-off between capacitance and cycling at elevated temperatures in redox additive aqueous electrolyte based high performance asymmetric supercapacitors. J Electrochim Acta 229:291–298

  26. 26.

    Gao H, Xiang J, Cao Y (2017) Hierarchically porous CoFe2O4 nanosheets supported on Ni foam with excellent electrochemical properties for asymmetric supercapacitors. Appl Surf Sci 413:351–359

  27. 27.

    Bhujun B, Tan MTT, Shanmugam AS (2017) Study of mixed ternary transition metal ferrites as potential electrodes for supercapacitor applications. J Res Phys:7345–7353

  28. 28.

    Zeng Y, Yu M, Meng Y et al (2016) Iron-based supercapacitor electrodes: advances and challenges. Adv Energy Mater 6(24):1601053

  29. 29.

    Zeng Z, Zhu L, Han E et al (2019) Soft-templating and hydrothermal synthesis of NiCo2O4 nanomaterials on Ni foam for high-performance supercapacitors. Ionics 25(6):2791–2803

  30. 30.

    Datt G, Abhyankar AC (2017) Dopant driven tunability of dielectric relaxation in MxCo(1-x)Fe2O4 (M: Zn2+, Mn2+, Ni2+) nano-ferrites. J Appl Phys 122(3):034102

  31. 31.

    Ren J, Li L, Chen C et al (2013) Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. J Adv Mater 25(8):1155–1159 1224

  32. 32.

    Han E, Han Y, Zhu L et al (2017) Polyvinyl pyrrolidone-assisted synthesis of flower-like nickel-cobalt layered double hydroxide on Ni foam for high-performance hybrid supercapacitor. Ionics 24(9):2705–2715

  33. 33.

    Mohamed SG, Hung TF, Chen CJ et al (2014) Efficient energy storage capabilities promoted by hierarchical MnCo2O4 nanowire-based architectures. RSC Adv 4(33):17230

  34. 34.

    Yue L, Zhang S, Zhao H et al (2019) One-pot synthesis CoFe2O4/CNTs composite for asymmetric supercapacitor electrode. Solid State Ionics 329:15–24

  35. 35.

    Sankar KV, Selvan RK, Meyrick D (2015) Electrochemical performances of CoFe2O4 nanoparticles and a rGO based asymmetric supercapacitor. RSC Adv 5(121):99959–99967

  36. 36.

    Zhao Y, Xu Y, Zeng J et al (2017) Low-crystalline mesoporous CoFe2O4/C composite with oxygen vacancies for high energy density asymmetric supercapacitors. RSC Adv 7(87):55513–55522

Download references

Author information

Correspondence to Enshan Han.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, L., Han, E., He, Y. et al. Effect of different templating agents on cobalt ferrite (CoFe2O4) nanomaterials for high-performance supercapacitor. Ionics (2020). https://doi.org/10.1007/s11581-020-03482-z

Download citation


  • Cobalt ferrite
  • Template agents
  • Electrochemical performance
  • Asymmetric supercapacitors