Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

ZnWO4/r-GO nanocomposite as high capacity anode for lithium-ion battery

  • 28 Accesses

Abstract

The pristine ZnWO4 and ZnWO4/r-GO nanocomposite synthesized by the facile solvothermal method were tested as anode materials for lithium-ion battery. Ex situ X-ray photoelectron spectroscopy (XPS) confirms the elemental composition of the pristine ZnWO4 and ZnWO4/r-GO nanocomposite. The ZnWO4/r-GO nanocomposite shows mesoporous nature and exhibits 50.802 m2 g−1 BET specific surface area, which is higher than that of pristine ZnWO4. In addition, the electrochemical property of the pristine ZnWO4 and ZnWO4/r-GO nanocomposite investigated using 2032 half-cell reveals that GO enhances the electrochemical property of the ZnWO4. The ZnWO4/r-GO nanocomposite not only exhibits higher discharge capacity of 1158 mAh g−1 at 100 mA g−1 but also shows longer and stable cycle life at 300 mA g−1 current density. The ZnWO4/r-GO nanocomposite exhibits 80.74% capacity retention even after 500 cycles. The synergetic effect of r-GO and ZnWO4 improves the capacity, columbic efficiency, and stability of the material. The results indicate that ZnWO4/r-GO nanocomposite is an interesting anode material for Li-ion battery with higher capacity complemented with stability compared to pristine ZnWO4.

Graphical abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Zhao X, Wang G, Zhou Y, Wang H (2017) Flexible free-standing ternary CoSnO3/graphene/carbon nanotubes composite papers as anodes for enhanced performance of lithium-ion batteries. Energy 118:172–180. https://doi.org/10.1016/j.energy.2016.12.018

  2. 2.

    Zhu G, Xu H, Wang H, Lu T, Pan L, Zhang L (2019) In situ growth of sandwich-like NiMoO4 nanowires/reduced graphene oxide hybrid for high-performance lithium storage. Ionics 25(10):4577–4588. https://doi.org/10.1007/s11581-019-03016-2

  3. 3.

    Zheng M, Tang H, Li L, Hu Q, Zhang L, Xue H, Pang H (2018) Hierarchically nanostructured transition metal oxides for lithium-ion batteries. Adv Sci 5(3):1700592. https://doi.org/10.1002/advs.201700592

  4. 4.

    Roy P, Srivastava SK (2015) Nanostructured anode materials for lithium ion batteries. J Mater Chem A 3(6):2454–2484. https://doi.org/10.1039/C4TA04980B

  5. 5.

    Reddy MV, Subba Rao GV, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113(7):5364–5457. https://doi.org/10.1021/cr3001884

  6. 6.

    Du L, Lin H, Ma Z, Wang Q, Li D, Shen Y, Zhang W, Rui K, Zhu J, Huang W (2019) Using and recycling V2O5 as high performance anode materials for sustainable lithium ion battery. J Power Sources 424:158–164. https://doi.org/10.1016/j.jpowsour.2019.03.103

  7. 7.

    Zhao J, Zhang Y, Wang Y, Li H, Peng Y (2018) The application of nanostructured transition metal sulfides as anodes for lithium ion batteries. J Energy Chem 27(6):1536–1554. https://doi.org/10.1016/j.jechem.2018.01.009

  8. 8.

    Li Z, Li W, Xue H, Kang W, Yang X, Sun M, Tang Y, Lee C-S (2014) Facile fabrication and electrochemical properties of high-quality reduced graphene oxide/cobalt sulfide composite as anode material for lithium-ion batteries. RSC Adv 4(70):37180–37186. https://doi.org/10.1039/C4RA06067A

  9. 9.

    Lopez J, Villarreal J, Cantu J, Parsons J, Alcoutlabi M (2018) Metal sulfide/carbon composite fibers as anode materials for lithium ion batteries. ECS Trans 85(13):275–284. https://doi.org/10.1149/08513.0275ecst

  10. 10.

    HerÉDy LA, Lai S-C, McCoy LR, Saunders RC (1975) Metal sulfide electrodes for secondary lithium batteries. In: New uses of sulfur, vol 140. Advances in Chemistry, vol 140. AMERICAN CHEMICAL SOCIETY, pp 203-215. doi:https://doi.org/10.1021/ba-1975-0140.ch013

  11. 11.

    Xu Q-T, Li J-C, Xue H-G, Guo S-P (2018) Binary iron sulfides as anode materials for rechargeable batteries: crystal structures, syntheses, and electrochemical performance. J Power Sources 379:41–52. https://doi.org/10.1016/j.jpowsour.2018.01.022

  12. 12.

    Xue H, Jiao Q, Du J, Wang S, Feng C, Wu Q, Li H, Lu Q, Shi D, Zhao Y (2019) Hollow MoS2/rGO composites as high-performance anode materials for lithium-ion batteries. Ionics 25(10):4659–4666. https://doi.org/10.1007/s11581-019-03041-1

  13. 13.

    Bhosale ME, Chae S, Kim JM, Choi J-Y (2018) Organic small molecules and polymers as an electrode material for rechargeable lithium ion batteries. J Mater Chem A 6(41):19885–19911. https://doi.org/10.1039/C8TA04906H

  14. 14.

    Zhou N, Dong H, Xu Y, Luo L, Zhao C, Wang D, Li H, Liu D (2018) Constructing inorganic/polymer microsphere composite as lithium ion battery anode material. Appl Surf Sci 433:806–814. https://doi.org/10.1016/j.apsusc.2017.10.125

  15. 15.

    Muench S, Wild A, Friebe C, Häupler B, Janoschka T, Schubert US (2016) Polymer-based organic batteries. Chem Rev 116(16):9438–9484. https://doi.org/10.1021/acs.chemrev.6b00070

  16. 16.

    Ulvestad A, Andersen HF, Jensen IJT, Mongstad TT, Mæhlen JP, Prytz Ø, Kirkengen M (2018) Substoichiometric silicon nitride – an anode material for Li-ion batteries promising high stability and high capacity. Sci Rep 8(1):8634. https://doi.org/10.1038/s41598-018-26769-8

  17. 17.

    Ulvestad A, Mæhlen JP, Kirkengen M (2018) Silicon nitride as anode material for Li-ion batteries: understanding the SiNx conversion reaction. J Power Sources 399:414–421. https://doi.org/10.1016/j.jpowsour.2018.07.109

  18. 18.

    Rowsell JLC, Pralong V, Nazar LF (2001) Layered lithium iron nitride: a promising anode material for Li-ion batteries. J Am Chem Soc 123(35):8598–8599. https://doi.org/10.1021/ja0112745

  19. 19.

    Wang L, Zhang K, Pan H, Wang L, Wang D, Dai W, Qin H, Li G, Zhang J (2018) 2D molybdenum nitride nanosheets as anode materials for improved lithium storage. Nanoscale 10(40):18936–18941. https://doi.org/10.1039/C8NR05889J

  20. 20.

    de Guzman RC, Yang J, Ming-Cheng Cheng M, Salley SO, Ng KYS (2014) High capacity silicon nitride-based composite anodes for lithium ion batteries. J Mater Chem A 2(35):14577–14584. https://doi.org/10.1039/C4TA02596B

  21. 21.

    Di Lecce D, Andreotti P, Boni M, Gasparro G, Rizzati G, Hwang J-Y, Sun Y-K, Hassoun J (2018) Multiwalled carbon nanotubes anode in lithium-ion battery with LiCoO2, Li[Ni1/3Co1/3Mn1/3]O2, and LiFe1/4Mn1/2Co1/4PO4 cathodes. ACS Sustain Chem Eng 6(3):3225–3232. https://doi.org/10.1021/acssuschemeng.7b03395

  22. 22.

    Fan P, Liu H, Liao L, Fu J, Wang Z, Lv G, Mei L, Hao H, Xing J, Dong J (2017) Flexible and high capacity lithium-ion battery anode based on a carbon nanotube/electrodeposited nickel sulfide paper-like composite. RSC Adv 7(78):49739–49744. https://doi.org/10.1039/C7RA08239H

  23. 23.

    Badi N (2016) Lithium-ion battery anodes of highly dispersed carbon nanotubes, graphene nanoplatelets, and carbon nanofibers. J Mater Sci Mater Electron 27(10):10342–10346. https://doi.org/10.1007/s10854-016-5119-8

  24. 24.

    de las Casas C, Li W (2012) A review of application of carbon nanotubes for lithium ion battery anode material. J Power Sources 208:74–85. https://doi.org/10.1016/j.jpowsour.2012.02.013

  25. 25.

    Zhang P, Ru Q, Gao Y, Yan H, Hou X, Chen F, Hu S, Zhao L (2019) Porous nano-silicon/TiO2/rGO@carbon architecture with 1000-cycling lifespan as superior durable anodes for lithium-ion batteries. Ionics 25(10):4675–4684. https://doi.org/10.1007/s11581-019-03050-0

  26. 26.

    Tang Q, Su H, Cui Y, Baker AP, Liu Y, Lu J, Song X, Zhang H, Wu J, Yu H, Qu D (2018) Ternary tin-based chalcogenide nanoplates as a promising anode material for lithium-ion batteries. J Power Sources 379:182–190. https://doi.org/10.1016/j.jpowsour.2018.01.051

  27. 27.

    Chen D, Ji G, Ding B, Ma Y, Qu B, Chen W, Lee JY (2014) Double transition-metal chalcogenide as a high-performance lithium-ion battery anode material. Ind Eng Chem Res 53(46):17901–17908. https://doi.org/10.1021/ie503759v

  28. 28.

    Li P, Zhao G, Zheng X, Xu X, Yao C, Sun W, Dou SX (2018) Recent progress on silicon-based anode materials for practical lithium-ion battery applications. Energy Storage Mater 15:422–446. https://doi.org/10.1016/j.ensm.2018.07.014

  29. 29.

    Ashuri M, He Q, Shaw LL (2016) Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter. Nanoscale 8(1):74–103. https://doi.org/10.1039/C5NR05116A

  30. 30.

    Yin S, Ji Q, Zuo X, Xie S, Fang K, Xia Y, Li J, Qiu B, Wang M, Ban J, Wang X, Zhang Y, Xiao Y, Zheng L, Liang S, Liu Z, Wang C, Cheng Y-J (2018) Silicon lithium-ion battery anode with enhanced performance: multiple effects of silver nanoparticles. J Mater Sci Technol 34(10):1902–1911. https://doi.org/10.1016/j.jmst.2018.02.004

  31. 31.

    (2008). J Nature 451 (7179):652

  32. 32.

    Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium ion batteries (2012). J Chem Commun 48 (16):2198

  33. 33.

    Bloom I, Dietz Rago N, Sheng Y, Li J, Wood DL, Steele LA, Lamb J, Spangler S, Grosso C, Fenton K (2019) Effect of overcharge on lithium-ion cells: silicon/graphite anodes. J Power Sources 432:73–81. https://doi.org/10.1016/j.jpowsour.2019.05.080

  34. 34.

    Kim S-H, Lee DH, Park C, Kim D-W (2018) Nanocrystalline silicon embedded in an alloy matrix as an anode material for high energy density lithium-ion batteries. J Power Sources 395:328–335. https://doi.org/10.1016/j.jpowsour.2018.05.087

  35. 35.

    Xu R, Zhang K, Wei R, Yuan M, Zhang Y, Liang F, Yao Y (2019) High-capacity flour-based nano-Si/C composite anode materials for lithium-ion batteries. Ionics. 26:1–11. https://doi.org/10.1007/s11581-019-03224-w

  36. 36.

    Obrovac MN, Chevrier VL (2014) Alloy negative electrodes for Li-ion batteries. Chem Rev 114(23):11444–11502. https://doi.org/10.1021/cr500207g

  37. 37.

    Zhang W-J (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196(1):13–24. https://doi.org/10.1016/j.jpowsour.2010.07.020

  38. 38.

    Liang C, Gao M, Pan H, Liu Y, Yan M (2013) Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries. J Alloys Compd 575:246–256. https://doi.org/10.1016/j.jallcom.2013.04.001

  39. 39.

    Zhang J, Yu A (2015) Nanostructured transition metal oxides as advanced anodes for lithium-ion batteries. Sci Bull 60(9):823–838. https://doi.org/10.1007/s11434-015-0771-6

  40. 40.

    Yan W, Liu X, Hou S, Wang X (2019) Study on micro-nanocrystalline structure control and performance of ZnWO4 photocatalysts. Cat Sci Technol 9(5):1141–1153. https://doi.org/10.1039/C8CY02343C

  41. 41.

    Pereira PFS, Gouveia AF, Assis M, de Oliveira RC, Pinatti IM, Penha M, Gonçalves RF, Gracia L, Andrés J, Longo E (2018) ZnWO4 nanocrystals: synthesis, morphology, photoluminescence and photocatalytic properties. Phys Chem Chem Phys 20(3):1923–1937. https://doi.org/10.1039/C7CP07354B

  42. 42.

    Fu S, Hu H, Feng C, Zhang Y, Bi Y (2019) Epitaxial growth of ZnWO4 hole-storage nanolayers on ZnO photoanodes for efficient solar water splitting. J Mater Chem A 7(6):2513–2517. https://doi.org/10.1039/C8TA11263K

  43. 43.

    Tang Z, Li X, Yang J, Yu J, Wang J, Tang Z (2014) Mixed potential hydrogen sensor using ZnWO4 sensing electrode. Sensors Actuators B Chem 195:520–525. https://doi.org/10.1016/j.snb.2014.01.086

  44. 44.

    Arularasu MV, Sundaram R (2016) Synthesis and characterization of nanocrystalline ZnWO4-ZnO composites and their humidity sensing performance. Sens Bio-Sens Res 11:20–25. https://doi.org/10.1016/j.sbsr.2016.08.006

  45. 45.

    You L, Cao Y, Sun YF, Sun P, Zhang T, Du Y, Lu GY (2012) Humidity sensing properties of nanocrystalline ZnWO4 with porous structures. Sensors Actuators B Chem 161(1):799–804. https://doi.org/10.1016/j.snb.2011.11.035

  46. 46.

    Brijesh K, Bindu K, Amudha A, Nagaraja H (2019) Dual electrochemical application of r-GO wrapped ZnWO<sub>4</sub>/Sb nanocomposite. Materials Research Express

  47. 47.

    Brijesh K, Bindu K, Shanbhag D, Nagaraja HS (2018) Chemically prepared polypyrrole/ZnWO4 nanocomposite electrodes for electrocatalytic water splitting. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2018.11.022

  48. 48.

    Mohamed Jaffer Sadiq M, Mutyala S, Mathiyarasu J, Krishna Bhat D (2017) RGO/ZnWO4/Fe3O4 nanocomposite as an efficient electrocatalyst for oxygen reduction reaction. J Electroanal Chem 799:102–110. https://doi.org/10.1016/j.jelechem.2017.05.051

  49. 49.

    Yesuraj J, Suthanthiraraj SA (2019) Bio-molecule templated hydrothermal synthesis of ZnWO4 nanomaterial for high-performance supercapacitor electrode application. J Mol Struct 1181:131–141. https://doi.org/10.1016/j.molstruc.2018.12.087

  50. 50.

    Yang Y, Zhu J, Shi W, Zhou J, Gong D, Gu S, Wang L, Xu Z, Lu B (2016) 3D nanoporous ZnWO4 nanoparticles with excellent electrochemical performances for supercapacitors. Mater Lett 177:34–38. https://doi.org/10.1016/j.matlet.2016.04.168

  51. 51.

    Ede SR, Ramadoss A, Nithiyanantham U, Anantharaj S, Kundu S (2015) Bio-molecule assisted aggregation of ZnWO4 nanoparticles (NPs) into chain-like assemblies: material for high performance supercapacitor and as catalyst for benzyl alcohol oxidation. Inorg Chem 54(8):3851–3863. https://doi.org/10.1021/acs.inorgchem.5b00018

  52. 52.

    Shi N, Xiong S, Wu F, Bai J, Chu Y, Mao H, Feng J, Xi B (2017) Hydrothermal synthesis of ZnWO4 hierarchical hexangular microstars for enhanced lithium-storage properties. Eur J Inorg Chem 2017(3):734–740. https://doi.org/10.1002/ejic.201601225

  53. 53.

    Zhang L, Wang Z, Wang L, Xing Y, Li X, Zhang Y (2014) Electrochemical performance of ZnWO4/CNTs composite as anode materials for lithium-ion battery. Appl Surf Sci 305:179–185. https://doi.org/10.1016/j.apsusc.2014.03.035

  54. 54.

    Wang X, Li B, Liu D, Xiong H (2014) ZnWO4 nanocrystals/reduced graphene oxide hybrids: synthesis and their application for Li ion batteries. SCIENCE CHINA Chem 57(1):122–126. https://doi.org/10.1007/s11426-013-4983-9

  55. 55.

    Brijesh K, Nagaraja HS (2019) Lower band gap Sb/ZnWO4/r-GO nanocomposite based supercapacitor electrodes. J Electron Mater 48(7):4188–4195. https://doi.org/10.1007/s11664-019-07185-8

  56. 56.

    Sreejesh M, Huang NM, Nagaraja HS (2015) Solar exfoliated graphene and its application in supercapacitors and electrochemical H2O2 sensing. Electrochim Acta 160:94–99. https://doi.org/10.1016/j.electacta.2015.02.005

  57. 57.

    Li Z, Wu G, Liu D, Wu W, Jiang B, Zheng J, Li Y, Li J, Wu M (2014) Graphene enhanced carbon-coated tin dioxide nanoparticles for lithium-ion secondary batteries. J Mater Chem A 2(20):7471–7477. https://doi.org/10.1039/C4TA00361F

  58. 58.

    Osotsi MI, Macharia DK, Zhu B, Wang Z, Shen X, Liu Z, Zhang L, Chen Z (2018) Synthesis of ZnWO4−x nanorods with oxygen vacancy for efficient photocatalytic degradation of tetracycline. Prog Nat Sci Mater Int 28(4):408–415. https://doi.org/10.1016/j.pnsc.2018.01.007

  59. 59.

    Zhan S, Zhou F, Huang N, Liu Y, He Q, Tian Y, Yang Y, Ye F (2017) Synthesis of ZnWO4 electrode with tailored facets: deactivating the microorganisms through photoelectrocatalytic methods. Appl Surf Sci 391:609–616. https://doi.org/10.1016/j.apsusc.2016.06.137

  60. 60.

    Wang F, Li W, Gu S, Li H, Zhou H, Wu X (2015) Novel In2S3/ZnWO4 heterojunction photocatalysts: facile synthesis and high-efficiency visible-light-driven photocatalytic activity. RSC Adv 5(109):89940–89950. https://doi.org/10.1039/C5RA16243B

  61. 61.

    Mohamed JS, Bhat DK (2017) Novel ZnWO<sub>4</sub>/RGO nanocomposite as high performance photocatalyst. AIMS Materials Science 4 (1):158-171. doi:https://doi.org/10.3934/matersci.2017.1.158

  62. 62.

    Chen L, Xu Z, Li J, Zhou B, Shan M, Li Y, Liu L, Li B, Niu J (2014) Modifying graphite oxide nanostructures in various media by high-energy irradiation. RSC Adv 4(2):1025–1031. https://doi.org/10.1039/C3RA46203J

  63. 63.

    Qu D (2014) Fundamental principals of battery design: porous electrodes. AIP Conf Proc 1597(1):14–25. https://doi.org/10.1063/1.4878477

  64. 64.

    Shim H-W, Cho I-S, Hong KS, Lim A-H, Kim D-W (2011) Wolframite-type ZnWO4 nanorods as new anodes for Li-ion batteries. J Phys Chem C 115(32):16228–16233. https://doi.org/10.1021/jp204656v

  65. 65.

    Xing L-L, Yuan S, He B, Zhao Y-Y, Wu X-L, Xue X-Y (2013) Synergistic effect of SnO2/ZnWO4 core–shell nanorods with high reversible lithium storage capacity. Chem Asian J 8(7):1530–1535. https://doi.org/10.1002/asia.201300337

  66. 66.

    Wu C-H, Pu N-W, Liu Y-M, Chen C-Y, Peng Y-Y, Cheng T-Y, Lin M-H, Ger M-D (2017) Improving rate capability of lithium-ion batteries using holey graphene as the anode material. J Taiwan Inst Chem Eng 80:511–517. https://doi.org/10.1016/j.jtice.2017.08.019

  67. 67.

    Tian R, Park S-H, King PJ, Cunningham G, Coelho J, Nicolosi V, Coleman JN (2019) Quantifying the factors limiting rate performance in battery electrodes. Nat Commun 10(1):1933. https://doi.org/10.1038/s41467-019-09792-9

  68. 68.

    Cai X, Lai L, Shen Z, Lin J (2017) Graphene and graphene-based composites as Li-ion battery electrode materials and their application in full cells. J Mater Chem A 5(30):15423–15446. https://doi.org/10.1039/C7TA04354F

  69. 69.

    Zhang L, Wang Z, Wang L, Xing Y, Zhang Y (2013) Preparation of ZnWO4/graphene composites and its electrochemical properties for lithium-ion batteries. Mater Lett 108:9–12. https://doi.org/10.1016/j.matlet.2013.06.094

  70. 70.

    Gong C, Bai Y-J, Feng J, Tang R, Qi Y-X, Lun N, Fan R-H (2013) Enhanced electrochemical performance of FeWO4 by coating nitrogen-doped carbon. ACS Appl Mater Interfaces 5(10):4209–4215. https://doi.org/10.1021/am400392t

  71. 71.

    Ilango PR, Prasanna K, Jo YN, Santhoshkumar P, Lee CW (2018) Wet chemical synthesis and characterization of nanocrystalline ZnWO4 for application in Li-ion batteries. Mater Chem Phys 207:367–372. https://doi.org/10.1016/j.matchemphys.2017.12.074

  72. 72.

    Shim H-W, Lim A-H, Lee G-H, Jung H-C, Kim D-W (2012) Fabrication of core/shell ZnWO4/carbon nanorods and their Li electroactivity. Nanoscale Res Lett 7(1):9. https://doi.org/10.1186/1556-276x-7-9

  73. 73.

    Peng T, Liu C, Hou X, Zhang Z, Wang C, Yan H, Lu Y, Liu X, Luo Y (2017) Control growth of mesoporous nickel tungstate nanofiber and its application as anode material for lithium-ion batteries. Electrochim Acta 224:460–467. https://doi.org/10.1016/j.electacta.2016.11.154

  74. 74.

    Liu H, Wang G, Park J, Wang J, Liu H, Zhang C (2009) Electrochemical performance of α-Fe2O3 nanorods as anode material for lithium-ion cells. Electrochim Acta 54(6):1733–1736. https://doi.org/10.1016/j.electacta.2008.09.071

  75. 75.

    Chien W-M, Chandra D, Joshua HL (2008) X-ray diffraction studies of Li-based complex hydrides after pressure cycling

Download references

Acknowledgments

BK would like to thank SAIF Cochin for providing the SEM and TEM facility. Also, we would like to thank ACNSMM facility for providing XPS measurements.

Funding

This study received financial support from the DST-SERB project grant (No. SB/S2/CMP-105/2013).

Author information

Correspondence to K. Brijesh or H. S. Nagaraja.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1076 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brijesh, K., Nagaraja, H.S. ZnWO4/r-GO nanocomposite as high capacity anode for lithium-ion battery. Ionics (2020). https://doi.org/10.1007/s11581-020-03480-1

Download citation

Keywords

  • ZnWO4/r-GO nanocomposite
  • Lithium-ion battery
  • Electrochemical studies
  • Anodes