Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Nanosulfonated silica incorporated SPEEK/SPVdF-HFP polymer blend membrane for PEM fuel cell application

  • 18 Accesses

Abstract

Sulfonated silica particles are admixed with sulfonated poly (ether ether ketone) (SPEEK)/sulfonated poly (vinylidene fluoride-co-hexafluoropropylene) (SPVdF-HFP), with various ratios by means of solvent casting. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), atomic force microscopy (AFM), and energy-dispersive X-ray spectroscopy (EDAX) were employed for characterizing the polymer electrolytes. Physicochemical and electrochemical characterizations such as ion exchange capacity, water uptake, swelling ratio, lambda values, temperature-dependent proton conductivity, and performance for prepared polymer composites are also analyzed. From the XRD and FTIR confirms the phase analysis and complex formation of the prepared polymer electrolytes. For 6 wt% S-SiO2, incorporated polymer membrane shows the high water uptake (36.5%), swelling ratio (15.9%), and ion exchange capacity (1.70 meq g−1) values compared to the respective samples. The highest proton conductivity value obtained for the 6 wt% S-SiO2 incorporated polymer membrane of 80 wt% SPEEK-20 wt% SPVdF-HFP is 7.9 × 10−2 S cm−1. The current density and power density value of 354 mA cm−2 and 110 mW cm−2 with an OCV of 0.95 V at 90 °C under the 100% RH.

This is a preview of subscription content, log in to check access.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Pandey J, Shukla A (2014) PVDF supported silica immobilized phosphotungstic acid membrane for DMFC application. Solid State Ionics 262:811–814

  2. 2.

    Zhang H, Shen PK (2012) Recent development of polymer electrolyte membranes for fuel cells. Chem Rev 112:2780–2832

  3. 3.

    Zhang J, Xie Z, Zhang J (2006) High temperature PEM fuel cells. J Power Sources 160(2):872–891

  4. 4.

    ChaSuk W, Colella W, Prinz FB (2006) Fuel cell fundamentals. John Wiley&Sons, New York

  5. 5.

    LeeJi Y, Yoo M, Cha K (2009) Lifecycle cost analysis to examine the economical feasibility of hydrogen as an alternative fuel. Int J Hydrog Energy 34:4243–4255

  6. 6.

    Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrog Energy 35:9349–9384

  7. 7.

    Handbook, fuel cell. EG & G technical services. Inc., Albuquerque, NM, DOE/ NETL-2004/1206;2004

  8. 8.

    Wee JH (2007) Applications of proton exchange membrane fuel cell systems. Renew Sust Energ Rev 11:1720–1738

  9. 9.

    Chandan A, Hattenberger M, Ahmad E-K (2013) High temperature(HT) polymer electrolyte membrane fuel cells (PEMFC)—a review. J Power Sources 231:264–278

  10. 10.

    Rayment C, Sherwin S (2003) Introduction to fuel cell technology. University of Notre Dame; 49–150

  11. 11.

    Jiang Z, Zhao X, Manthiram A (2013) Sulfonated poly (ether ether ketone) membranes with sulfonated graphene oxide fillers for direct methanol fuel cells. Int J Hydrog Energy 38:5875–5884

  12. 12.

    Roelofs KS, Hirth T, Schiestel T (2011) Dihydrogenimidazole modified silica-sulfonated poly (ether ether ketone) hybrid materials as electrolyte membranes for direct ethanol fuel cells. Mater Sci Eng B 176:727–735

  13. 13.

    Rangasamy VS, Thayumanasundaram S, Seo JW (2015) Vibrational spectroscopic study of pure and silica-doped sulfonated poly (ether ether ketone) membranes. Spectrochim Acta A Mol Biomol Spectrosc 138:693–699

  14. 14.

    Ren S, Sun G, Li C (2006) Sulphonated poly (ether ether ketone)/polyvinylidene fluoride polymer blends for DMFCs. Mater Lett 60:44

  15. 15.

    Stephan AM, Teeters D (2003) Characterization of PVdF-HFP polymer membranes prepared by phase inversion techniques I. Morphology and charge-discharge studies. Electrochim Acta 48:2143

  16. 16.

    Devi AU, Neelakandan S, Nagendra A (2016) Highly selective sulfonated poly(vinylidene fluoride-cohexafluoropropylene)/poly(ether sulfone) blend proton exchange membranes for direct methanol fuel cells. J Appl Polym Sci 133:43907

  17. 17.

    Neelakandan S, Rana D, Matsuura T, Muthumeenal A, Kanagaraja P, Nagendran A (2014) Fabrication and electrochemical properties of surface modified sulfonated poly(vinylidenefluoride-co-hexafluoropropylene) membranes for DMFC application. Solid State Ionics 268:35–41

  18. 18.

    Quartarone E, Carollo A, Tomasi C (2007) Relationship between microstructure and transport properties of proton- conducting porous PVDF membranes. J Power Sources 168:126

  19. 19.

    Neelakandan S, Ramachandran R, Fang ML, Wang L (2019) Improving the performance of sulfonated polymer membrane by using sulfonic acid functionalized hetero-metallic metal-organic framework for DMFC applications. Int J Energy Res 43:3756–3767

  20. 20.

    Ying YP, Kamarudin SK, Masdar MS (2018) Silica-related membranes in fuel cell applications: an overview. Int J Hydrog Energy 16068-16084

  21. 21.

    Lufrano F, Baglio V, Di Blasi O (2012) Solid polymer electrolyte based on sulfonated polysulfone membranes and acidic silica for direct methanol fuel cells. Solid State Ionics 216:90–94

  22. 22.

    Padmavathi R, Karthikumar R, Sangeetha D (2012) Multilayered sulphonated polysulfone/silica composite membranes for fuel cell applications. Electrochim Acta 71:283–293

  23. 23.

    Gnana kumar G, Kim AR, Nahm KS (2011) High proton conductivity and low fuel crossover of polyvinylidene fluorideehexafluoro propylene silica sulfuric acid composite membranes for direct methanol fuel cells. Curr Appl Phys 11:896–902

  24. 24.

    Krishnan NN, Henkensmeier D, Jang JH (2011) Sulfonated poly (ether sulfone)-based silica nanocomposite membranes for high temperature polymer electrolyte fuel cell applications. Int J Hydrog Energy 36:7152–7161

  25. 25.

    Gnana kumar G, Kim P, Nahm KS (2007) Structural and characterization of PVdF-co-HFP/PEG/Al2SO3proton conducting membranes for fuel cells. J.Membr.Sci 303:126–131

  26. 26.

    Gnana kumar G, Kim AR, Nahm KS (2010) High ion and low molecular transportation of the polyvinylidene fluoride-hexa fluoro propylene hybrid membranes for the high temperature and lower humidity direct methanol fuel cell applications. J Power Sources 195:5922–5928

  27. 27.

    Hazarika M, Jana T (2013) Novel proton exchange membrane for fuel cell developed from blends of polybenzimidazole with fluorinated polymer. Eur Polym J 49:1564–1576

  28. 28.

    Acar O, Sen U, Ata A (2010) Blend membranes from (2,5 benzimidazole) and poly (Styrenesulfonic acid) as proton conducting polymer electrolytes for fuel cells. J Mater Sci 45:993–998

  29. 29.

    Selvakumar K, Rajendran K, Ramesh Prabhu M (2018) Influence of barium zirconate on SPEEK-based polymer electrolytes for PEM fuel cell applications. Ionics 25:2243–2253. https://doi.org/10.1007/s11581-018-2613-4

  30. 30.

    Mai Z, Zhang H, Li X (2011) Sulfonated poly(etheretherketone) and sulfonated polyvinylidene fluoride – co- hexafluoropropylene based blend exchange membranes for direct methanol fuel cell applications. J Power Sources 196:482

  31. 31.

    Salarizadeh P, Javanbakht M, Pourmahdian S (2016) Enhancing the performance of SPEEK polymer electrolyte membranes using functionalized TiO2 nanoparticles with proton hopping sites. Solid State Ionics 6(57):51599–51608

  32. 32.

    Das S, Kumar P, Dutta K, Kundu PP (2014) Partial sulfonation of PVdF-co-HFP: a preliminary study and characterization for application in direct methanol fuel cell. Appl Energy 113:169–177

  33. 33.

    Selvakumar K, Ramesh Prabhu M (2018) Investigation on meta-polybenzimidazole blend with sulfonated PVdF-HFP proton conducting polymer electrolytes for HT-PEM fuel cell application. J Mater Sci Mater Electron 29:15163–15173. https://doi.org/10.1007/s10854-018-9658-z

  34. 34.

    Selvakumar K, Rajendran S, Ramesh Prabhu M (2017) A study of influence on sulfonated TiO2-poly (vinylidene fluoride-co-hexafluoropropylene) nano composite membranes for PEM fuel cell application. Appl Surf Sci 418:64–71

  35. 35.

    Johra FT, Lee JW, Jung WG (2014) Facile and safe graphene preparation on solution based platform. J Ind Eng Chem 20:2883

  36. 36.

    Sivasankaran A, Sangeetha D (2015) Influence of sulfonated SiO2 in sulfonated polyether ether ketone nanocomposite membrane in microbial fuel cell. Fuel. 159:689–696

  37. 37.

    Bagheri A, Javanbakht M, Hosseinabadi P, Beydaghi H, Shabaniki A (2018) Preparation and characterization of SPEEK/SPVDF-co-HFP/LaCrO3 nanocomposite blend membranes for direct methanol fuel cells. Polymer. 138:275–287

  38. 38.

    Bagheri A, Salarizadeh P, Hazerd MSA, Hosseinabadi P, Kashefi S, Beydaghi H (2019) The effect of adding sulfonated SiO2 nanoparticles and polymer blending on properties and performance of sulfonated poly ether sulfone membrane: fabrication and optimization. Electrochim Acta 295:875–890

  39. 39.

    Yoo M, Kim M, Hwang Y (2014) Fabrication of highly selective PVA-g-GO/SPVA membranes via cross-linking method for direct methanol fuel cells. Ionics 20(6):875–886

  40. 40.

    Jun MS, Choi YW, Kim JD (2012) Solvent casting effects of sulfonated poly(ether ether ketone) for polymer electrolyte membrane fuel cell. J Membr Sci 396:32–37

  41. 41.

    Yu L, Shen HM, Xu ZL (2009) PVDF–TiO2 composite hollow fiber ultrafiltration membranes prepared by TiO2sol–gel method and blending method. J Appl Phys 113:1743–1763

  42. 42.

    Nagar H, Sahu N, Basava Rao VV, Sridhar S (2020) Surface modification of sulfonated polyethersulfone membrane with polyaniline nanoparticles for application in direct methanol fuel cell. Renew Energy 146:1262–1277

  43. 43.

    Salarizadeh P, Javanbakht M, Pourmahdian S (2017) Enhancing the performance of SPEEK polymer electrolyte membranes using functionalized TiO2 nanoparticles with proton hopping sites. RSC Adv 7(14):8303–8313

  44. 44.

    Siva sankaran A, Sangeetha D (2015) A study of influence on nano composite sulfonated TiO2 and sulfonated poly styrene-ethylene-butylene-poly styrene for microbial fuel cell application. Energy 88:202–208

  45. 45.

    Mondal S, Soam S, Kundu PP (2015) Reduction of methanol crossover and improved electrical efficiency in direct methanol fuel cell by the formation of a thin layer on Nafion 117 membrane: effect of dip-coating of a blend of sulphonated PVdF-co-HFP and PBI. J Membr Sci 474:140–147

  46. 46.

    Zhong S, Cui X, Gao Y (2014) Fabrication and properties of poly(vinyl alcohol)-based polymer electrolyte membranes for direct methanol fuel cell applications. Int J Hydrog Energy 39:17857–17864

  47. 47.

    Liang X, Pan G, Xu L (2015) A modified decal method for preparing the membrane electrode assembly of proton exchange membrane fuel cells. Fuel 139:393–400

  48. 48.

    Rambabu G, Bhat SD (2014) Simultaneous tuning of methanol crossover and ionic conductivity of SPEEK membrane electrolyte by incorporation of PSSA functionalized MWCNTs: a comparative study in DMFCs. Chem Eng J 243:517–525

  49. 49.

    Di Z, Xie Q, Li H (2015) Novel composite proton-exchange membrane based on proton-conductive glass powders and sulfonated poly (ether ether ketone). J Power Sources 273:688–696

  50. 50.

    Kumar P, Dutta K, Kundu PP (2014) Enhanced performance of direct methanol fuel cells: a study on the combined effect of various supporting electrolytes, flow channel designs and operating temperatures. Int J Energy Res 38:41–50

  51. 51.

    Kumar P, Dutta K, Das S (2014) Membrane prepared by incorporation of crosslinked sulfonated polystyrene in the blend of PVdF-HFP/Nafion: characterization and evaluation for application in DMFC. Appl Energy

  52. 52.

    Mayahi A, Ismail AF, Ilbeygi H (2013) Effect of operating temperature on the behavior of promising SPEEK/ cSMM electrolyte membrane for DMFCs. Sep Purif Technol 106:72–81

  53. 53.

    Dutta K, Das S, Kumar P (2014) Polymer electrolyte membrane with high selectivity ratio for direct methanol fuel cells: a preliminary study based on blends of partially sulfonated polymers polyaniline and PVdF-co-HFP. Appl Energy 118:183–191

  54. 54.

    Gumusoglu T, Ari GA, Deligoz H (2011) Investigation of salt addition and acid treatment effects on the transport properties of ionically cross-linked polyelectrolyte complex membranes based on chitosan and polyacrylic acid. J Membr Sci 376:25–34

  55. 55.

    Gnana Kumar G, Kim AR, Nahm KS (2011) High proton conductivity and low fuel cell crossover of poly vinylidene fluoride-co-hexa fluoro propylene-silica sulfuric acid composite membranes for direct methanol fuel cells. Curr Appl Phys 11:892–902

  56. 56.

    Pradeepa P, Edwinraj S, Sowmya G (2015) Optimization of hybrid polymer electrolytes with the effect of lithium salt concentration in PEO/PVdF-HFP blends. Mater Sci Eng B

  57. 57.

    Pradeepa P, Sowmya G, Ramesh Prabhu M (2016) Influence of barium titanate nanofiller on PEO/PVdF-HFP blend-based polymer electrolyte membrane for Li battery applications, J Solid State Electrochem

  58. 58.

    Thampan TM, Jalani H, Choi (2005) Systematic approach to design higher temperature composite PEMS. J Electro Chem Soc 152:316–325

Download references

Funding

Funded by DST-SERB (EEQ/2017/000033), New Delhi, dated 26 Mar 2018 and MHRD–RUSA PHASE–2.0 (Letter no. F.24-51/2014-U), New Delhi.

Author information

Correspondence to M. Ramesh Prabhu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martina, P., Gayathri, R., Pugalenthi, M.R. et al. Nanosulfonated silica incorporated SPEEK/SPVdF-HFP polymer blend membrane for PEM fuel cell application. Ionics (2020). https://doi.org/10.1007/s11581-020-03478-9

Download citation

Keywords

  • SPEEK
  • SPVdF-HFP
  • Polymer composites
  • Proton conductivity
  • Solvent casting technique