In situ preparation of flaky attached CuCo2S4 microspheres for high-performance asymmetric supercapacitors


Bimetallic sulfides are appealing great interest for renewable accumulated energy and conversion devices because of the multiple merits. Herein, flaky attached CuCo2S4 microspheres are reported via a simple solvothermal strategy and serve as an electrode to evaluate the supercapacitors characteristics. It should be noted that such electrode presents a high specific capacitance of 752 F·g−1 at 1 A·g−1 and excellent cycling stability over 4500 cycles. In addition, an asymmetric device is assembled by using CuCo2S4 and AC as the positive electrode and negative electrode, respectively, which achieves a high-energy density (46.2 Wh·kg−1 at 0.796 kW·kg−1) and retains a long cycling life over 8000 cycles. Such performance demonstrates that CuCo2S4 with the unique structure might be great potential for energy storage.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Wang P, Zhang Y, Yin Y, Fan L, Zhang N, Sun K (2018) In situ synthesis of CuCo2S4@N/S-doped graphene composites with pseudocapacitive properties for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 10(14):11708–11714.

  2. 2.

    Sial MAZG, Din MAU, Wang X (2018) Multimetallic nanosheets: synthesis and applications in fuel cells. Chem Soc Rev 47(16):6175–6200.

  3. 3.

    Tang J, Ge Y, Shen J, Ye M (2016) Facile synthesis of CuCo2S4 as a novel electrode material for ultrahigh supercapacitor performance. Chem Commun 52(7):1509–1512.

  4. 4.

    Wang Y, Song Y, Xia Y (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 45(21):5925–5950.

  5. 5.

    Salanne M, Rotenberg B, Naoi K, Kaneko K, Taberna PL, Grey CP, Dunn B, Simon P (2016) Efficient storage mechanisms for building better supercapacitors. Nat Energy 1(6):16070.

  6. 6.

    Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343(6176):1210–1211.

  7. 7.

    Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828.

  8. 8.

    Merabet L, Rida K, Boukmouche N (2018) Sol-gel synthesis, characterization, and supercapacitor applications of MCo2O4 (M = Ni, Mn, Cu, Zn) cobaltite spinels. Ceram Int 44(10):11265–11273.

  9. 9.

    Liu L, Niu Z, Chen J (2016) Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations. Chem Soc Rev 45(15):4340–4363.

  10. 10.

    Wei J, Li X, Xue H, Shao J, Zhu R, Pang H (2018) Hollow structural transition metal oxide for advanced supercapacitors. Adv Mater Interfaces 5(9):1701509.

  11. 11.

    Liu W, Niu H, Yang J, Cheng K, Ye K, Zhu K, Wang G, Cao D, Yan J (2018) Ternary transition metal sulfides embedded in graphene nanosheets as both the anode and cathode for high-performance asymmetric supercapacitors. Chem Mater 30(3):1055–1068.

  12. 12.

    Liu T, Zhang L, Cheng B, You W, Yu J (2018) Fabrication of a hierarchical NiO/C hollow sphere composite and its enhanced supercapacitor performance. Chem Commun 54(30):3731–3734.

  13. 13.

    Xing L, Dong Y, Hu F, Wu X, Umar A (2018) Co3O4 nanowire@NiO nanosheet arrays for high performance asymmetric supercapacitors. Dalton Trans 47(16):5687–5694.

  14. 14.

    Sun J, Guo L, Sun X, Zhang J, Hou L, Li L, Yang S, Yuan C (2019) One-dimensional nanostructured pseudocapacitive materials: design, synthesis and applications in supercapacitors. Batteries Supercaps 2(10):820–841.

  15. 15.

    Sun J, Wu C, Sun X, Hu H, Zhi C, Hou L, Yuan C (2017) Recent progresses in high-energy-density all pseudocapacitive-electrode-materials-based asymmetric supercapacitors. J Mater Chem A 5(20):9443–9464.

  16. 16.

    Saleki F, Mohammadi A, Moosavifard SE, Hafizi A, Rahimpour MR (2019) MOF assistance synthesis of nanoporous double-shelled CuCo2O4 hollow spheres for hybrid supercapacitors. J Colloid Interface Sci 556:83–91.

  17. 17.

    He W, Wang C, Li H, Deng X, Xu X, Zhai T (2017) Ultrathin and porous Ni3S2/CoNi2S4 3D-network structure for super high energy density asymmetric supercapacitors. Adv Energy Mater 7(21):1700983.

  18. 18.

    Tao K, Han X, Cheng Q, Yang Y, Yang Z, Ma Q, Han L (2018) A zinc cobalt sulfide nanosheet array derived from a 2D bimetallic metal-organic frameworks for high-performance supercapacitors. Chem Eur J 24(48):12584–12591.

  19. 19.

    Guo M, Balamurugan J, Tran TD, Kim NH, Lee JH (2016) Facile fabrication of Co2CuS4 nanoparticle anchored N-doped graphene for high-performance asymmetric supercapacitors. J Mater Chem A 4(44):17560–17571.

  20. 20.

    Zhang P, Guan B, Yu L, Lou XD (2017) Formation of double-shelled zinc-cobalt sulfide dodecahedral cages from bimetallic zeolitic imidazolate frameworks for hybrid supercapacitors. Angew Chem 56(25):7141–7145.

  21. 21.

    Chen Q, Chen W, Ye J, Wang Z, Lee JY (2015) L-cysteine-assisted hydrothermal synthesis of nickel disulfide/graphene composite with enhanced electrochemical performance for reversible lithium storage. J Power Sources 294:51–58.

  22. 22.

    Wan H, Ji X, Jiang J, Yu J, Miao L, Zhang L, Bie S, Chen H, Ruan Y (2013) Hydrothermal synthesis of cobalt sulfide nanotubes: the size control and its application in supercapacitors. J Power Sources 243:396–402.

  23. 23.

    Kalimuldina G, Taniguchi I (2016) Synthesis and electrochemical characterization of stoichiometric Cu2S as cathode material with high rate capability for rechargeable lithium batteries. J Power Sources 331:258–266.

  24. 24.

    Podili S, Geetha D, Ramesh PS (2017) One-pot synthesis of CTAB stabilized mesoporous cobalt doped CuS nano flower with enhanced pseudocapacitive behavior. J Mater Sci Mater Electron 28(20):15387–15397.

  25. 25.

    Pujari RB, Lokhande AC, Kim JH, Lokhande CD (2016) Bath temperature controlled phase stability of hierarchical nanoflakes CoS2 thin films for supercapacitor application. RSC Adv 6(46):40593–40601.

  26. 26.

    Li M, Liang J, Chai Y, Li D, Lu J, Li L (2017) One-step synthesis of alpha-MnS nanosheets for supercapacitor electrode materials. Micro Nano Lett 12(10):735–737.

  27. 27.

    Xu B, Pan L, Zhu Q (2016) Synthesis of Co3S4 nanosheets and their superior supercapacitor property. J Mater Eng Perform 25(3):1117–1121.

  28. 28.

    Ma G, Peng H, Mu J, Huang H, Zhou X, Lei Z (2013) In situ intercalative polymerization of pyrrole in graphene analogue of MoS2 as advanced electrode material in supercapacitor. J Power Sources 229:72–78.

  29. 29.

    Peng S, Li L, Li C, Tan H, Cai R, Yu H, Mhaisalkar S, Srinivasan M, Ramakrishna S, Yan Q (2013) In situ growth of NiCo2S4 nanosheets on graphene for high-performance supercapacitors. Chem Commun 49(86):10178–10180.

  30. 30.

    Hou L, Shi Y, Wu C, Zhang Y, Ma Y, Sun X, Sun J, Zhang X, Yuan C (2018) Monodisperse metallic NiCoSe2 hollow sub-microspheres: formation process, intrinsic charge-storage mechanism, and appealing pseudocapacitance as highly conductive electrode for electrochemical supercapacitors. Adv Funct Mater 28(13):1705921.

  31. 31.

    Hou L, Shi Y, Zhu S, Rehan M, Pang G, Zhang X, Yuan C (2017) Hollow mesoporous hetero-NiCo2S4/Co9S8 submicro-spindles: unusual formation and excellent pseudocapacitance towards hybrid supercapacitors. J Mater Chem A 5(1):133–144.

  32. 32.

    Yu F, Chang Z, Yuan X, Wang F, Zhu Y, Fu L, Chen Y, Wang H, Wu Y, Li W (2018) Ultrathin NiCo2S4@graphene with a core–shell structure as a high performance positive electrode for hybrid supercapacitors. J Mater Chem A 6(14):5856–5861.

  33. 33.

    Pramanik A, Maiti S, Dhawa T, Sreemany M, Mahanty S (2018) High faradaic charge storage in ZnCo2S4 film on Ni-foam with a hetero-dimensional microstructure for hybrid supercapacitor. Mater Today Energy 9:416–427.

  34. 34.

    Xu X, Song Y, Xue R, Zhou J, Gao J, Xing F (2016) Amorphous CoMoS4 for a valuable energy storage material candidate. Chem Eng J 301:266–275.

  35. 35.

    You H, Zhang L, Jiang Y, Shao T, Li M, Gong J (2018) Bubble-supported engineering of hierarchical CuCo2S4 hollow spheres for enhanced electrochemical performance. J Mater Chem A 6(13):5265–5270.

  36. 36.

    Zhu Y, Chen X, Zhou W, Xiang K, Hu W, Chen H (2017) Controllable preparation of highly uniform CuCo2S4 materials as battery electrode for energy storage with enhanced electrochemical performances. Electrochim Acta 249:64–71.

  37. 37.

    Xu W, Lu J, Huo W, Li J, Wang X, Zhang C, Gu X, Hu C (2018) Direct growth of CuCo2S4 nanosheets on carbon fiber textile with enhanced electrochemical pseudocapacitive properties and electrocatalytic properties towards glucose oxidation. Nanoscale 10(29):14304–14313.

  38. 38.

    Xie T, Gai Y, Shang Y, Ma C, Su L, Liu J, Gong L (2018) Self-supporting CuCo2S4 microspheres for high-performance flexible asymmetric solid-state supercapacitors. Eur J Inorg Chem 2018(43):4711–4719.

  39. 39.

    Li Y, Yin J, An L, Lu M, Sun K, Zhao Y, Cheng F, Xi P (2018) Metallic CuCo2S4 nanosheets of atomic thickness as efficient bifunctional electrocatalysts for portable, flexible Zn-air batteries. Nanoscale 10(14):6581–6588.

  40. 40.

    Mohammadi A, Moosavifard SE, Goljanian Tabrizi A, Abdi MM, Karimi G (2018) Nanoporous CuCo2S4 microspheres: a novel positive electrode for high-performance hybrid energy storage devices. ACS Appl Energy Mater 2(1):627–635.

  41. 41.

    Jia H, Cai Y, Wang Z, Zheng X, Li C, Liang H, Qi J, Cao J, Feng J, Fei W (2019) Sea urchin-like CuCo2S4 microspheres with a controllable interior structure as advanced electrode materials for high-performance supercapacitors. Inorg Chem Front.

  42. 42.

    Wiltrout AM, Read CG, Spencer EM, Schaak RE (2016) Solution synthesis of thiospinel CuCo2S4 nanoparticles. Inorg Chem 55(1):221–226.

  43. 43.

    Xu J, Hou K, Ju Z, Ma C, Wang W, Wang C, Cao J, Chen Z (2017) Synthesis and electrochemical properties of carbon dots/manganese dioxide (CQDs/MnO2) nanoflowers for supercapacitor applications. J Electrochem Soc 164(2):A430–A437.

  44. 44.

    Wei T, Chen C, Chien H, Lu S, Hu C (2010) A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process. Adv Mater 22(3):347–351.

  45. 45.

    Wei C, Huang Y, Xue S, Zhang X, Chen X, Yan J, Yao W (2017) One-step hydrothermal synthesis of flaky attached hollow-sphere structure NiCo2S4 for electrochemical capacitor application. Chem Eng J 317:873–881.

  46. 46.

    Guo SH, Yuan PW, Wang J, Chen WQ, Ma KY, Liu F, Cheng JP (2017) One-step synthesis of copper-cobalt carbonate hydroxide microsphere for electrochemical capacitors with superior stability. J Electroanal Chem 807:10–18.

  47. 47.

    Yang L, Xie L, Ren X, Wang Z, Liu Z, Du G, Asiri AM, Yao Y, Sun X (2018) Hierarchical CuCo2S4 nanoarrays for high-efficient and durable water oxidation electrocatalysis. Chem Commun 54(1):78–81.

  48. 48.

    Cheng S, Shi T, Chen C, Zhong Y, Huang Y, Tao X, Li J, Liao G, Tang Z (2017) Construction of porous CuCo2S4 nanorod arrays via anion exchange for high-performance asymmetric supercapacitor. Sci Rep 7(1):6681.

  49. 49.

    Yuan X, Tang B, Sui Y, Huang S, Qi J, Pu Y, Wei F, He Y, Meng Q, Cao P (2018) CuCo2S4 nanotubes on carbon fiber papers for high-performance all-solid-state asymmetric supercapacitors. J Mater Sci Mater Electron 29(10):8636–8648.

  50. 50.

    Tang N, You H, Li M, Chen GZ, Zhang L (2018) Cross-linked Ni(OH)2/CuCo2S4/Ni networks as binder-free electrodes for high performance supercapatteries. Nanoscale 10(44):20526–20532.

  51. 51.

    Li H, Li Z, Wu Z, Sun M, Han S, Cai C, Shen W, Liu X, Fu Y (2019) Enhanced electrochemical performance of CuCo2S4/carbon nanotubes composite as electrode material for supercapacitors. J Colloid Interface Sci 549:105–113.

  52. 52.

    Zhu J, Tang S, Wu J, Shi X, Zhu B, Meng X (2017) Wearable high-performance supercapacitors based on silver-sputtered textiles with FeCo2S4–NiCo2S4 composite nanotube-built multitripod architectures as advanced flexible electrodes. Adv Energy Mater 7(2):1601234.

  53. 53.

    Gao S, Liao F, Ma S, Zhu L, Shao M (2015) Network-like mesoporous NiCo2O4 grown on carbon cloth for high-performance pseudocapacitors. J Mater Chem A 3(32):16520–16527.

  54. 54.

    Moosavifard SE, Fani S, Rahmanian M (2016) Hierarchical CuCo2S4 hollow nanoneedle arrays as novel binder-free electrodes for high-performance asymmetric supercapacitors. Chem Commun 52(24):4517–4520.

  55. 55.

    Kong W, Lu C, Zhang W, Pu J, Wang Z (2015) Homogeneous core–shell NiCo2S4 nanostructures supported on nickel foam for supercapacitors. J Mater Chem A 3(23):12452–12460.

  56. 56.

    Zhu Y, Wu Z, Jing M, Yang X, Song W, Ji X (2015) Mesoporous NiCo2S4 nanoparticles as high-performance electrode materials for supercapacitors. J Power Sources 273:584–590.

  57. 57.

    Wang Y, Yang D, Zhou T, Pan J, Wei T, Sun Y (2017) Oriented CuCo2S4 nanograss arrays/Ni foam as an electrode for a high-performance all-solid-state supercapacitor. Nanotechnology 28(46):465402.

  58. 58.

    Kaverlavani SK, Moosavifard SE, Bakouei A (2017) Self-templated synthesis of uniform nanoporous CuCo2O4 double-shelled hollow microspheres for high-performance asymmetric supercapacitors. Chem Commun 53(6):1052–1055.

  59. 59.

    Jin C, Cui Y, Zhang G, Luo W, Liu Y, Sun Y, Tian Z, Zheng W (2018) Synthesis of copper-cobalt hybrid oxide microflowers as electrode material for supercapacitors. Chem Eng J 343:331–339.

Download references


This work was supported by the Natural Science Foundation of Shandong Province (ZR2017LB031).

Author information

Correspondence to Liangyu Gong.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOC 1012 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xie, T., Xu, J., Wang, J. et al. In situ preparation of flaky attached CuCo2S4 microspheres for high-performance asymmetric supercapacitors. Ionics (2020) doi:10.1007/s11581-020-03453-4

Download citation


  • Solvothermal
  • CuCo2S4
  • Supercapacitors
  • Pseudocapacitor
  • Asymmetric device